[1] IPCC. Fourth assessment report. Cambridge: Cambridge University Press, 2007. [2] Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate, 2005, (18): 1096-1108. [3] Liu B H, Xu M, Henderson M, et al. Observed trends of precipitation amount, frequency, and intensity in China, 1960-2000. Journal of Geophysical Research Atmospheres, 2005, 110(D8): 1-10. [4] Mu X M. Responses of rhizosphere soil hydrolase activities of seven plants in Songnen grassland to nitrogen increase and rainfall change. Jilin: Northeast Normal University, 2019. 穆雪萌. 松嫩草地七种植物根际土壤水解酶活性对增氮及改变降雨量的响应. 吉林: 东北师范大学, 2019. [5] Jing Z, Bishow P, Kevin K, et al. Drought responses of above-ground and below-ground characteristics in warm-season turfgrass. Journal of Agronomy and Crop Science, 2019, 205: 1-12. [6] Qiao S. Diversity of root traits of maize and its response to drought stress. Yangling: Northwest A&F University, 2018. 乔胜. 玉米根系性状多样性及其对干旱胁迫的响应. 杨凌: 西北农林科技大学, 2018. [7] Boyrahmadi M, Raiesi F. Plant roots and species moderate the salinity effect on microbial respiration, biomass, and enzyme activities in a sandy clay soil. Biology and Fertility of Soils, 2018, 54(4): 1-13. [8] Zhao J, Bodner G, Rewald B, et al. Root architecture simulation improves the inference from seedling root phenotyping towards mature root systems. Journal of Experimental Botany, 2017, 68(5): 965-982. [9] He G Z, Chen Y N, Chen Y P, et al. Adaptive strategy of Tamarix spp. root architecture in arid environment. Journal of Beijing Normal University (Natural Science), 2016, 52(3): 277-282. 何广志, 陈亚宁, 陈亚鹏, 等. 柽柳根系构型对干旱的适应策略. 北京师范大学学报(自然科学版), 2016, 52(3): 277-282. [10] Wang W, Wang Y, Günter H, et al. Linkage of root morphology to anatomy with increasing nitrogen availability in six temperate tree species. Plant and Soil, 2018, 425(1/2): 1-12. [11] Pande P K, Ghyldiyal J C, Gautam P. Secondary xylem anatomy of root and stem of Alstonia scholais, Bischhiofia javanica and Trewia nudiflora: The characteristic plant species of manu fresh water swamp, Rishikesh, Dehradun (India). Indian Forester, 2013, 139(8): 726-730. [12] Zhang J Q, Zhang J Y, Wang Y R, et al. Adaptability of introduced species for improvement of degraded alpine grassland in Gannan areas, China. Pratacultural Science, 2014, 31(4): 744-753. 张建全, 张吉宇, 王彦荣, 等. 高寒草甸退化草地引种适应性. 草业科学, 2014, 31(4): 744-753. [13] Pertierra L R, Aragón, Shaw J D, et al. Global thermal niche models of two European grasses show high invasion risks in Antarctica. Global Change Biology, 2017, 23(7): 2863-2873. [14] Wang C, Li X, Gao L N, et al. Study on classification and genetic diversity of Kentucky bluegrasses by using RAPD markers. Journal of Northeast Agricultural University (English Edition), 2012, 19(4): 37-41. [15] Curley J, Jung G. RAPD-based genetic relationships in Kentucky bluegrass: Comparison of cultivars, interspecific hybrids, and plant introductions. Crop Science, 2004, 44(4): 1299-1306. [16] Bremer D J, Lee H, Su K, et al. Relationships between normalized difference vegetation index and visual quality in cool-season turfgrass: I. Variation among species and cultivars. Crop Science, 2011, 51(5): 2212-2218. [17] Wang X Y, Hu T M, Wang Q Z, et al. Growth of Kentucky bluegrass as influenced by nitrogen and trinexapacethyl. Scientia Agriculture Sinica, 2009, 8(12): 1498-1502. [18] Yuan X J, Gong Z D, Tu M Y, et al. Effects of summer drought and strong light stress on Kentucky bluegrass in Shanghai. Pratacultural Science, 2019, 36(8): 2017-2025. 袁晓君, 龚振德, 涂明月, 等. 上海地区夏季干旱、强光照对草地早熟禾的影响. 草业科学, 2019, 36(8): 2017-2025. [19] Liu Y, Yang W, Ma H L, et al. Effects of salt stress on seedling physiological characteristics of six Kentucky bluegrass. Journal of Gansu Agricultural University, 2019, 54(5): 140-150, 162. 刘燕, 杨伟, 马晖玲, 等. 盐胁迫对6种草地早熟禾幼苗生理特性的影响.甘肃农业大学学报, 2019, 54(5): 140-150, 162. [20] Cao G B, Suo N C R. Study on cold tolerance of Poa pratensis grassland in Qinghai. Qinghai Prataculture, 2019, 28(1): 2-7. 曹国兵, 索南才让. 青海草地早熟禾耐寒性研究. 青海草业, 2019, 28(1): 2-7. [21] Liu J, Xie X, Du J, et al. Effects of simultaneous drought and heat stress on Kentucky bluegrass. Scientia Horticulturae, 2008, 115(2): 190-195. [22] Zhang Z H, Chai Q. General theory of turfgrass. Beijing: Science Press, 2009. 张自和, 柴琦. 草坪学通论. 北京: 科学出版社, 2009. [23] Luo H X. Temperature effects on root architecture and root interaction. Guangzhou: Sun Yat-sen University, 2017. 罗虹霞. 温度对根构型和根系间相互作用的影响. 广州: 中山大学, 2017. [24] Zhao C, Yan Y, Yimamu Y, et al. Effects of soil moisture on cotton root length density and yield under drip irrigation with plastic mulch in Aksu Oasis farmland. Journal of Arid Land, 2010, 2(4): 243-249. [25] Ma X D, Zhu C G, Li W H. Response of root morphology and biomass of Tamarix ramosissima seedlings to different water irrigation. Chinese Journal of Plant Ecology, 2012, 36(10): 1024-1032. 马晓东, 朱成刚, 李卫红. 多枝柽柳幼苗根系形态及生物量对不同灌溉处理的响应. 植物生态学报, 2012, 36(10): 1024-1032. [26] Fan J Z, Cong S, Hai F G, et al. Responses of root growth of Alhagi sparsifolia Shap. (fabaceae) to different simulated groundwater depths in the southern fringe of the Taklimakan Desert, China. Journal of Arid Land, 2013, 5(2): 220-232. [27] Coleman M. Spatial and temporal patterns of root distribution in developing stands of four woody crop species grown with drip irrigation and fertilization. Plant and Soil, 2007, 299(1/2): 195-213. [28] Li W R, Zhang S Q, Ding S Y, et al. Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150. [29] Cortina J, Green J J, Baddeley J A, et al. Root morphology and water transport of Pistacia lentiscus seedlings under contrasting water supply: A test of the pipe stem theory. Environmental and Experimental Botany, 2008, 62(3): 343-350. [30] Padilla F M, Aarts B H J, Roijendijk Y O A, et al. Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant and Soil, 2013, 369(1/2): 377-386. [31] Bao Y J, Cao M, Li Z H, et al. A comparative study of the response of Leymus chinensis and Stipa grandis root characteristics to moisture gradients. Acta Ecologica Sinica, 2019, 39(3): 1063-1070. 鲍雅静, 曹明, 李政海, 等. 羊草与大针茅根系构型对水分梯度响应的比较研究. 生态学报, 2019, 39(3): 1063-1070. [32] Lü S, Zhang X H, Zhang N, et al. Response of root growth and architecture of Populus euphratica seedling on soil water. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(5): 1005-1012. 吕爽, 张现慧, 张楠, 等. 胡杨幼苗根系生长与构型对土壤水分的响应. 西北植物学报, 2015, 35(5): 1005-1012. [33] Yang Z Y, Zhou B Z, Chen Q B, et al. Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata. Acta Ecologica Sinica, 2018, 38(18): 6729-6740. 杨振亚, 周本智, 陈庆标, 等. 干旱对杉木幼苗根系构型及非结构性碳水化合物的影响. 生态学报, 2018, 38(18): 6729-6740. [34] Jiang Y F. The changes of physiological and structural to Amorpha fruticosa in seeds and roots under PEG-6000 stress. Harbin: Northeast Forestry University, 2014. 江远芳. PEG-6000胁迫下紫穗槐种子和幼苗根系的生理及结构变化. 哈尔滨: 东北林业大学, 2014. [35] Tao R, Shi S L, Zhang C M, et al. Effects of exogenous coumarin and caffeic acid on root morphogenesis and anatomical structure of alfalfa. Acta Agrestia sinica, 2019, 27(2): 404-412. 陶茸, 师尚礼, 张翠梅, 等. 外源香豆素和咖啡酸对紫花苜蓿根系形态建成与解剖结构的影响. 草地学报, 2019, 27(2): 404-412. [36] Konijnendijk C C, Ricard R M, Kenney A, et al. Defining urban forestry-A comparative perspective of North America and Europe. Urban Forestry & Urban Greening, 2006, 4(3/4): 93-103. [37] Wang P, Chen N L, Zou X H, et al. Research progress on adaptive responses of anatomical structure of plant roots to stress. Chinese Journal of Ecology, 2015, 34(2): 550-556. 汪攀, 陈奶莲, 邹显花, 等. 植物根系解剖结构对逆境胁迫响应的研究进展. 生态学杂志, 2015, 34(2): 550-556. [38] Ma X F, Yu T, Wang L H, et al. Effects of water deficit at seedling stage on maize root development and anatomical structure. Chinese Journal of Applied Ecology, 2010, 21(7): 1731-1736. 马旭凤, 于涛, 汪李宏, 等. 苗期水分亏缺对玉米根系发育及解剖结构的影响. 应用生态学报, 2010, 21(7): 1731-1736. [39] Zhang R Q, Ma X D, Lü H H. Response of growth and anatomical structure of roots of Tamarix ramosissima seedlings to salinity and water stress. Pratacultural Science, 2016, 33(6): 1164-1173. 张瑞群, 马晓东, 吕豪豪. 多枝柽柳幼苗生长及其根系解剖结构对水盐胁迫的响应. 草业科学, 2016, 33(6): 1164-1173. |