[1] Fathi A, Tari D B.Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 2016, 10(1): 1-6. [2] Zandalinas S I, Mittler R, Balfagón D, et al. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 2018, 162(1): 1-12. [3] Tang L L, Cai H, Ji W, et al. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology & Biochemistry, 2013, 71(71C): 22-30. [4] Quan W L, Chan Z L.Research progress on drought resistance mechanism of alfalfa. Biotechnology Bulletin, 2016, 32(10): 34-41. 权文利, 产祝龙. 紫花苜蓿抗旱机制研究进展. 生物技术通报, 2016, 32(10): 34-41. [5] Han D L, Wang Y R.Adaptability of Medicago sativa under water stress. Acta Prataculturae Sinica, 2005, 14(6): 7-13. 韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13. [6] Yang Q C, Kang J M, Zhang T J, et al. Distribution, breeding and utilization of alfalfa germplasm resources. Chinese Science Bulletin, 2016, 61(2): 261-270. 杨青川, 康俊梅, 张铁军, 等. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61(2): 261-270. [7] Wang P, Chen N L, Zou X H, et al. Research progress on adaptive responses of anatomical structure of plant roots to stress. Chinese Journal of Ecology, 2015, 34(2): 550-556. 汪攀, 陈奶莲, 邹显花, 等. 植物根系解剖结构对逆境胁迫响应的研究进展. 生态学杂志, 2015, 34(2): 550-556. [8] Pan X D, Zhang Y, Shao M, et al. Research progress on adaptive responses of crop root structure to drought stress. Journal of Agricultural Science and Technology, 2017, 19(2): 51-58. 潘晓迪, 张颖, 邵萌, 等. 作物根系结构对干旱胁迫的适应性研究进展. 中国农业科技导报, 2017, 19(2): 51-58. [9] Liu S Q, Song F B.A comparison of root anatomical structure of maize genotypes with different drought tolerance. Agricultural Research in the Arid Areas, 2007, 25(2): 377-381. 刘胜群, 宋凤斌. 不同耐旱性玉米根系解剖结构比较研究. 干旱地区农业研究, 2007, 25(2): 377-381. [10] Li L H, Li S Q, Zhai J H, et al. Review of the relationship between wheat roots and water stress. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(1): 1-7. 李鲁华, 李世清, 翟军海, 等. 小麦根系与土壤水分胁迫关系的研究进展. 西北植物学报, 2001, 21(1): 1-7. [11] Tang Y J, Ma M, Deng X P, et al. Relationship between drought resistance and root characteristics of wheat under drought stress. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(4): 48-54. 唐玉婧, 马猛, 邓西平, 等. 干旱胁迫下小麦抗旱能力与其根系特征间的关系. 西北农林科技大学学报(自然科学版), 2014, 42(4): 48-54. [12] Zhao X, Dong K H, Zhang Y, et al. Drought resistance and root anatomy of Lespedeza davurica (Laxm.) Schindl. Acta Agrestia Sinica, 2011, 19(1): 13-19. 赵祥, 董宽虎, 张垚, 等. 达乌里胡枝子根解剖结构与其抗旱性的关系. 草地学报, 2011, 19(1): 13-19. [13] Wang J H, Zhang X M, Chen A, et al. Response of physiological characteristics and anatomical structure of roots in Amorpha fruticosa seedlings exposed to simulated drought with PEG-6000. Acta Ecologica Sinica, 2018, 38(2): 511-517. 王竞红, 张秀梅, 陈艾, 等. 紫穗槐幼苗根系生理特性和解剖结构对PEG-6000模拟干旱的响应. 生态学报, 2018, 38(2): 511-517. [14] Kondo M, Murty M V R, Aragones D V. Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Science & Plant Nutrition, 2000, 46(3): 721-732. [15] Aziez A F, Hanudin E, Harieni S.Impact of water management on root morphology, growth and yield component of lowland rice varieties under the organic system of rice intensification. Journal of Degraded and Mining Lands Management, 2018, 5(2): 1035-1045. [16] Quan W, Xun L, Wang H, et al. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Frontiers in Plant Science, 2015, 6: 1256. [17] Bai W M, Zuo Q, Huang Y F, et al. Effect of water supply on root growth and water uptake of alfalfa in Wulanbuhe sandy region. Acta Phytoecologica Sinica, 2001, 25(1): 35-41. 白文明, 左强, 黄元仿, 等. 乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究. 植物生态学报, 2001, 25(1): 35-41. [18] Guo Z G, Wang S M, Zhang Z H.Analysis of root system development progress of several alfalfa (Medicago sativa) cultivars. Chinese Journal of Applied & Environmental Biology, 2003, 9(4): 367-371. 郭正刚, 王锁民, 张自和. 紫花苜蓿品种间根系发育过程分析. 应用与环境生物学报, 2003, 9(4): 367-371. [19] Wan S M, Hu S L, Huang Q H, et al. Study on root system development ability of alfalfa cultivars. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(11): 2048-2052. 万素梅, 胡守林, 黄勤慧, 等. 不同紫花苜蓿品种根系发育能力的研究. 西北植物学报, 2004, 24(11): 2048-2052. [20] Chen J S, Li J H, Chang G Z.Drought resistance analysis of morphological structures in roots of different alfalfa varieties. Inner Mongolia Prataculture, 2008, 20(4): 51-55. 陈积山, 李锦华, 常根柱. 不同苜蓿品种根系形态结构的抗旱性分析. 内蒙古草业, 2008, 20(4): 51-55. [21] Li W R, Zhang S Q, Ding S Y, et al. Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. 李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150. [22] Tian C X, Zhang Y M, Wang K, et al. The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO3. Acta Prataculturae Sinica, 2014, 23(5): 133-142. 田晨霞, 张咏梅, 王凯, 等. 紫花苜蓿组织解剖结构对NaHCO3盐碱胁迫的响应. 草业学报, 2014, 23(5): 133-142. [23] Chen W Y, Zhang W G, Has Q M G. Observation of the Rec Medicago sativa L’s morphological anatomy. Journal of Inner Mongolia University for Nationalities (Natural Science Edition), 2003, 18(3): 241-244. 程伟燕, 张卫国, 哈斯其木格. 特莱克紫花苜蓿的形态解剖学观察. 内蒙古民族大学学报(自然科学版), 2003, 18(3): 241-244. [24] Zhang C M, Shi S L, Wu F.Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties. Scientia Agricultura Sinica, 2018, 51(5): 868-882. 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51(5): 868-882. [25] Li H P.Plant microscopy technique. Beijing: Science Press, 2009. 李和平. 植物显微技术. 北京: 科学出版社, 2009. [26] Li W R, Zhang S Q, Lun S, et al. Changes in root characteristics, gas exchange and water use efficiency following water stress and rehydration of alfalfa and sorghum. Australian Journal of Crop Science, 2011, 5(12): 1521-1532. [27] Zhang G F, Sun H Y.Effects of drought stress with PEG6000 on morphology and structure in Camellia oleifera seedlings. Hubei Agricultural Sciences, 2016, 55(11): 2829-2833. 张规富, 孙航远. PEG6000模拟干旱对油茶幼苗形态结构的影响. 湖北农业科学, 2016, 55(11): 2829-2833. [28] Hund A, Ruta N, Liedgens M.Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant & Soil, 2009, 318(1/2): 311-325. [29] Decuseara C, Nedelea G.The effect of genotype and water stress on root growth in some alfalfa varieties. Journal of Horticulture Forestry & Biotechnology, 2012, 16(1): 149-152. [30] Jangpromma N, Thammasirirak S, Jaisil P, et al. Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (Saccharum officinarum L.). Australian Journal of Crop Science, 2012, 6(8): 1298-1304. [31] Steudle E.Water uptake by root: Effects of water deficit. Journal of Experimental Botany, 2000, 51(350): 1531-1542. [32] Chimungu J G, Brown K M, Lynch J P.Reduced root cortical cell file number improves drought tolerance in maize. Plant Physiology, 2014, 166(4): 1943-1955. [33] Wang Z F, Zhang S Q, Liu X F.Root system hydraulic conductivity of different genotype maize and its relationship with root anatomy. Chinese Journal of Applied Ecology, 2005, 16(12): 2349-2352. 王周锋, 张岁岐, 刘小芳. 玉米根系水流导度差异及其与解剖结构的关系. 应用生态学报, 2005, 16(12): 2349-2352. [34] Jiang Q F, Yun H Y.Study on drought resistance, hydrotropism and anatomic structure of root system of maize inbred lines with different genotypes. Agricultural Research in the Arid Areas, 2016, 34(5): 1-8. 蒋奇峰, 员海燕. 不同基因型玉米自交系苗期根系抗旱性向水性及解剖结构研究. 干旱地区农业研究, 2016, 34(5): 1-8. [35] Peng W X, Wang W Q, Liang H Y, et al. The effect of water stress on the microstructure of Glycyrrhica uralensis. Journal of Agricultural University of Hebei, 2003, 26(3): 46-48. 彭伟秀, 王文全, 梁海永, 等. 水分胁迫对甘草营养器官解剖构造的影响. 河北农业大学学报, 2003, 26(3): 46-48. [36] Boughalleb F, Abdellaoui R, Ben-Brahim N, et al. Anatomical adaptations of Astragalus gombiformis Pomel. under drought stress. Central European Journal of Biology, 2014, 9(12): 1215-1225. [37] Yambao E B, Ingram K T, Real J G.Root xylem influence on the water relations and drought resistance of rice. Journal of Experimental Botany, 1992, 43(252): 925-932. |