[1] Sun L, Zhou Z, Cheng K.Plant micropropagation from in vitro cultured bulb scales of Lilium lancifolium. Life Science Journal, 2013, 10(2): 2689-2692. [2] Chen Q M, Yin H, Li X Y, et al. Effects of salicylic acid on the activities of antioxidant systems in lily plants under high temperature stress. Journal of China Agricultural University, 2008, 13(2): 44-48. 陈秋明, 尹慧, 李晓艳, 等. 高温胁迫下外源水杨酸对百合抗氧化系统的影响. 中国农业大学学报, 2008, 13(2): 44-48. [3] Wei C, Cui Q, Zhang X Q, et al. Three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. Journal of Plant Biology, 2016, 59(5): 456-466. [4] Yang Y H, Yin L R, Ge H, et al. Overexpression of a novel member of ERF transcription factor JERF3 in lily enhances the tolerance to salt. Acta Horticulurae Sinica, 2007, 34(6): 1485-1490. 杨宇红, 尹丽蓉, 葛红, 等. ERF转录因子新成员JERF3提高百合的耐盐性. 园艺学报, 2007, 34(6): 1485-1490. [5] Xin H B, Zhang H, Zhong X H, et al. Over-expression of LlHsfA2b, a lily heat shock transcription factor lacking trans-activation activity in yeast, can enhance tolerance to heat and oxidative stress in transgenic Arabidopsis seedlings. Plant Cell Tissue and Organ Culture, 2017, 130(3): 617-629. [6] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5(5): 199-206. [7] Ke D X, Peng K P, Xia Y J, et al. Clonging of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus.Acta Prataculturae Sinica, 2018, 27(8): 95-106. 柯丹霞, 彭昆鹏, 夏远君, 等. 盐胁迫应答基因GmWRKY6的克隆及转基因百脉根的抗盐分析. 草业学报, 2018, 27(8): 95-106. [8] Rushton P J, Torres J T, Parniske M, et al. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. The European Molecular Biology Organization Journal, 1996, 15(20): 5690-5700. [9] Ishiguro S, Nakamura K.Characterization of a cDNA encoding a novel DNA-binding protein SPF1 that recognizes SP8 sequences in the 5’ upstream regions of genes coding forsporamin and β-amylase from sweet potato. Molecular and General Genetics, 1994, 244(6): 563-571. [10] Rushton P J, Macdonald H, Huttly A K, et al. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of α-Amy2 genes. Plant Molecular Biology, 1995, 29(4): 691-702. [11] Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 2000, 5(5): 199-206. [12] Zhang Y J, Wang L J.The WRKY transcription factor superfamily: Its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 2005, 5(1): 1-12. [13] Jiang J, Ma S, Ye N, et al. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. [14] Wang F, Chen H W, Li Q T, et al. GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. The Plant Journal, 2015, 83(2): 224-236. [15] Sun Y D, Yu D Q.Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. Plant Cell Reports, 2015, 34(8): 1295-1306. [16] Yang L H, Wang W, Liu Y Q, et al. Cloning and expression analysis of LpWRKY20 gene from Lilium pumilum. Journal of Northwest Forestry University, 2019, 34(3): 104-110. 杨柳慧, 汪王, 刘艳秋, 等. 细叶百合LpWRKY20基因的克隆和表达分析. 西北林学院学报, 2019, 34(3): 104-110. [17] Liang Y, Yuan S X, Fen H Y, et al. Clonging and expression analysisi of actin gene (lilyActin) from lily. Acta Horticulurae Sinica, 2013, 40(7): 1318-1326. 梁云, 袁素霞, 冯慧颖, 等. 百合肌动蛋白基因lilyActin的克隆与表达分析. 园艺学报, 2013, 40(7): 1318-1326. [18] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4): 402-408. [19] Wei Z Y, Zhang Y Y, Wang Y P, et al. Production of bioactive recombinant bovine chymosin in tobacco plants. International Journal of Molecular Sciences, 2016, 17(5): 624. [20] Rushton P J, Somssich I E, Ringler P, et al. WRKY transcription factors. Trends in Plant Science, 2010, 15(5): 247-258. [21] Qiu Y P, Yu D Q.Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 2009, 65(1): 35-47. [22] Jiang Y Q, Deyholos M K.Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 2009, 69(1): 91-105. [23] Li S J, Fu Q T, Huang W D, et al. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Reports, 2009, 28(4): 683-693. [24] Liu X F, Song Y Z, Xing F Y, et al. GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 2016, 253(5): 1265-1281. [25] Xia Y P, Huang C H, He G F, et al. Changes of carbohydrates metabolism and enzymes activities in low temperature storage for bulds of Lilium oriental hybrids. Acta Horticulurae Sinica, 2006, 33(3): 571-576. 夏宜平, 黄春辉, 何桂芳, 等. 东方百合鳞茎冷藏解除休眠的养分代谢和酶活性变化. 园艺学报, 2006, 33(3): 571-576. [26] Sun H M, Li T L, Li Y F.Starch metabolism and sprouting of bulb in Lilium davidii var. unicolor stored at different gold temperatures. Acta Horticulurae Sinica, 2004, 31(3): 337-342. 孙红梅, 李天来, 李云飞. 不同贮藏温度下兰州百合种球淀粉代谢与萌发关系初探. 园艺学报, 2004, 31(3): 337-342. [27] Liu F, Wang J Y, Wang X L, et al. The apical bud cell ultra-structure changes of Lilium pumilum bulbs during breaking dormancy under refrigerated condition. Acta Horticulurae Sinica, 2013, 40(6): 1110-1118. 刘芳, 王家艳, 王晓丽, 等. 细叶百合鳞茎在低温解除休眠过程中茎尖细胞超微结构的变化. 园艺学报, 2013, 40(6): 1110-1118. [28] Han L L, Li J J, Guo J, et al. Expression vector construction and genetic transformation of Paeonia lactiflora gibberellin 20-oxidase gene. American Journal of Plant Sciences, 2017, 8(7): 1525-1533. [29] Han L L, Li J J, Ma Y, et al. Cloning and expression analysis of PlGA20ox gene in peony (Paeonia lactiflora) buds during. Plant Physiology Journal, 2017, 53(4): 677-686. 韩璐璐, 李俊杰, 马燕, 等. 芍药PlGA20ox基因的克隆及其在芽内休眠解除进程中的表达分析. 植物生理学报, 2017, 53(4): 677-686. [30] Ding Z J.Functional study of Arabidopsis WRKY transcription factors in response to abiotic stresses. Hangzhou: Zhejaing University, 2014. 丁忠杰. 拟南芥WRKY转录因子在非生物胁迫响应中的功能研究. 杭州: 浙江大学, 2014. [31] Ying Y B, Zhu Y Y, Guo W D, et al. Identification and expression analysis of bHLH transcription factor gene family in Prunus pseudocerasus Lindl. Molecular Plant Breeding, 2018, 16(14): 4559-4568. 应炎标, 朱友银, 郭卫东, 等. 樱桃bHLH转录因子家族基因鉴定及表达分析. 分子植物育种, 2018, 16(14): 4559-4568. [32] Shang Y, Yan L, Liu Z Q, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell, 2010, 22(6): 1909-1935. [33] Ding Z J, Yan J Y, Li C X, et al. Transcription factor WRKY46 modulates the development of Arabidopsis lateral roots in osmotic/salt stress conditions via regulation of ABA signaling and auxin homeostasis. The Plant Journal, 2015, 84(1): 56-69. [34] Che Y M, Sun Y J, Lu S C, et al. AtWRKY40 functions in drought stress response in Arabidopsis thaliana. Plant Physiology Journal, 2018, 54(3): 456-464. 车永梅, 孙艳君, 卢松冲, 等. AtWRKY40参与拟南芥干旱胁迫响应过程. 植物生理学报, 2018, 54(3): 456-464. [35] Shinozaki K, Yamaguchi-Shinozaki K.Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 2007, 58(2): 221-227. |