草业学报 ›› 2021, Vol. 30 ›› Issue (6): 16-27.DOI: 10.11686/cyxb2020354
收稿日期:
2020-07-28
修回日期:
2020-10-26
出版日期:
2021-05-21
发布日期:
2021-05-21
通讯作者:
冯丹
作者简介:
Corresponding author. E-mail: fdlady@163.com基金资助:
Xiao-ding LIN(), Le CHANG, Dan FENG()
Received:
2020-07-28
Revised:
2020-10-26
Online:
2021-05-21
Published:
2021-05-21
Contact:
Dan FENG
摘要:
青海作为三江源所在地,监测其生态系统变化对我国的生态文明建设具有战略意义。植被总初级生产力(GPP)是陆地生态系统碳循环的重要组分。采用MODIS卫星遥感数据和土壤背景校正NIRv模型,结合3个地面站点的通量观测数据,估算了2000-2019年青海地区的GPP,并结合土地利用数据和气象数据分析了其时空分异特征及对气候变化的响应。结果表明:1)土壤背景校正NIRv模型估算的青海地区GPP与地面实测GPP数据呈良好线性关系(R2=0.91, P<0.001),相较于MODIS GPP产品,估算的GPP在青海地区更具有适用性。2)2000-2019年青海地区植被GPP多年平均值为140.5 Tg C·yr-1,年均GPP整体处于上升趋势,年增长率为1.25 Tg C·yr-1 (P<0.05)。3)青海地区GPP空间分布呈由西向东显著增加趋势,不同植被类型的GPP值年际变化表现出较大差异。4)整体上,年均气温与GPP变化的相关性高于平均降水量,气象因素对不同植被GPP的影响存在明显空间异质性。
林小丁, 常乐, 冯丹. 2000-2019年青海地区植被总初级生产力遥感估算及时空变化分析[J]. 草业学报, 2021, 30(6): 16-27.
Xiao-ding LIN, Le CHANG, Dan FENG. Remote-sensing estimation of vegetation gross primary productivity and its spatiotemporal changes in Qinghai Province from 2000 to 2019[J]. Acta Prataculturae Sinica, 2021, 30(6): 16-27.
图1 青海地区位置图(a)及土地利用图(b)自然资源部网站(http://bzdt.ch.mnr.gov.cn)获取的中国地图(编号为1030121568)。Map of China obtained on the Ministry of Natural Resources website (http://bzdt.ch.mnr.gov.cn)(No :1030121568).
Fig.1 Location map (a) and land use map (b) of Qinghai Province
图2 GPP估算的精度评价a: PAR×SANIRv估算GPP的交叉验证;b: PAR×SANIRv与地面观测GPP的比较; c: MODIS GPP产品与地面观测GPP的比较。a: Cross-validation of using PAR×SANIRv to estimate GPP; b: Comparison between PAR×SANIRv and ground observation GPP; c: Comparison between MODIS GPP and ground observation GPP.
Fig.2 Accuracy evaluation of GPP estimation
图9 GPP同温度与降水的相关性a:GPP与温度的相关系数;b:GPP与温度的相关系数的显著性;c:GPP与降水的相关系数;d:GPP与降水的相关系数的显著性。a: Correlation coefficient of GPP with temperature; b: Significance of the correlation coefficient between GPP and temperature; c: Correlation coefficient of GPP with precipitation; d: Significance of the correlation coefficient between GPP and precipitation.
Fig.9 The correlation of GPP with temperature and precipitation
1 | Yuan W P, Cai W W, Liu D, et al. Satellite-based vegetation production models of terrestrial ecosystem: An overview. Advances in Earth Science, 2014, 29(5): 541-550. |
袁文平, 蔡文文, 刘丹, 等. 陆地生态系统植被生产力遥感模型研究进展. 地球科学进展, 2014, 29(5): 541-550. | |
2 | Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth’s ecosystems. Science, 1997, 277(25): 494-499. |
3 | Li Z Q, Yu G R, Xiao X M, et al. Ecosystem productivity was estimated using MODIS data and climatic data//The first national ecological and Agrometeorological business development and Technology Exchange Conference. Kunming: Jiangxi Meteorological Service, National Meteorological Centre, 2006: 353-363. |
李正泉, 于贵瑞, 肖向明, 等. 利用MODIS资料与气候数据估算生态系统生产力//首届全国生态与农业气象业务发展与技术交流会. 昆明: 江西省气象局, 国家气象中心, 2006: 353-363. | |
4 | Sims D A, Rahman A F, Cordova V D, et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment: An Interdisciplinary Journal, 2008, 112(4): 1633-1646. |
5 | Sims D A, Rahman A F, Cordova V D, et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. Journal of Geophysical Research: Biogeosciences, 2006, 111(G4), DOI: 10.1029/2006JG000162. |
6 | Huete A R, Didan K, Shimabukuro Y E, et al. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 2006, 33(6): 6401-6405. |
7 | Huete A R, Restrepo-Coupe N, Ratana P, et al. Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in monsoon Asia. Agricultural and Forest Meteorology, 2008, 148(5): 748-760. |
8 | Olofsson P, Lagergren F, Lindroth A, et al. Towards operational remote sensing of forest carbon balance across Northern Europe. Biogeosciences, 2008(3): 817. |
9 | Arneth A, Schubert P, Eklundh L, et al. Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems. Remote Sensing of Environment: An Interdisciplinary Journal, 2011, 115(4): 1081-1089. |
10 | Huang N, Chen J M, Wu C. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sensing of Environment: An Interdisciplinary Journal, 2011, 115(12): 3424-3435. |
11 | Ma X, Huete A, Yu Q, et al. Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. Remote Sensing of Environment, 2013, 139: 97-115. |
12 | Hilker T, Hall F G, Coops N C. Data assimilation of photosynthetic light-use efficiency using multi-angular satellite data: I. Model formulation. Remote Sensing of Environment: An Interdisciplinary Journal, 2012, 121: 301-308. |
13 | Guanter L, Zhang Y, Jung M, et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 1327-1333. |
14 | Badgley G, Field C B, Berry J A. Canopy near-infrared reflectance and terrestrial photosynthesis. Science Advances, 2017, 3(3): e1602244. |
15 | Badgley G, Anderegg L D L, Berry J A, et al. Terrestrial gross primary production: Using NIRV to scale from site to globe. Global Change Biology, 2019, 25(11): 3731-3740. |
16 | Liu P. Remote sensed net primary productivity and its spatital-temporal pattern over “Three-River Headwaters” Region in 2000-2012. Xining: Qinghai Normal University, 2016. |
刘鹏. 2000-2012年三江源植被生产力遥感估算及其时空格局分析. 西宁: 青海师范大学, 2016. | |
17 | Zhang J P, Liu C L, Hao H G, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data. Ecology and Environmental Sciences, 2015, 24(1): 8-13. |
张继平, 刘春兰, 郝海广, 等. 基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究. 生态环境学报, 2015, 24(1): 8-13. | |
18 | Liu F, Zeng Y N. Spatial-temporal change in vegetation net primary productivity and its response to climate and human activities in Qinghai Plateau in the past 16 years. Acta Ecologica Sinica, 2019, 39(5): 1528-1540. |
刘凤, 曾永年. 近16年青海高原植被NPP时空格局变化及气候与人为因素的影响. 生态学报, 2019, 39(5): 1528-1540. | |
19 | Jia J H, Liu H Y, Lin Z S.Multi-time scale changes of vegetation NPP in six provinces of Northwest China and their responses to climate change.Acta Ecologica Sinica, 2019, 39(14): 5058-5069. |
贾俊鹤, 刘会玉, 林振山. 中国西北地区植被NPP多时间尺度变化及其对气候变化的响应. 生态学报, 2019, 39(14): 5058-5069. | |
20 | Ding S W, Chen Y Y, Tan L R, et al. Vegetation changes in the Meng Mountain Region from 2001 to 2016 based on MODIS data. Journal of Capital Normal University (Natural Science Edition), 2018, 39(4): 81-87. |
丁少文, 陈亦妍, 谭丽荣, 等. 基于MODIS数据的蒙山2001-2016年植被动态变化研究. 首都师范大学学报(自然科学版), 2018, 39(4): 81-87. | |
21 | Wu L B, Gu S, Zhao L, et al. Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China.Chinese Journal of Plant Ecology, 2010, 34(7): 770-780. |
吴力博, 古松, 赵亮, 等. 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 2010, 34(7): 770-780. | |
22 | State Environmental Protection Administration. The RS investigation map of ecological environment for Western China. Beijing: Science Press, 2002. |
国家环保总局. 中国西部地区生态环境现状遥感调查图集. 北京: 科学出版社, 2002. | |
23 | Jiang C, Guan K, Wu G, etal. A daily, 250 m and real-time gross primary productivity product (2000-present) covering the contiguous United States. Earth System Science Data, 2020, 13(2): 281-298. |
24 | Ryu Y, Jiang C, Kobayashi H, et al. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sensing of Environment, 2018, 204: 812-825. |
25 | Liu J Y, Zhuang D F, Wang J H, et al. 1∶100000 landuse dataset of Qinghai Province (2000). National Tibetan Plateau Data Center, 2013. DOI: 10.11888/Socioeco.tpdc.270634. |
刘纪远, 庄大方, 王建华, 等. 青海省1∶10万土地利用数据集(2000). 国家青藏高原科学数据中心, 2013. DOI: 10.11888/Socioeco.tpdc.270634. | |
26 | Peng S Z. 1 km monthly mean temperature dataset for china (1901-2017). National Tibetan Plateau Data Center, 2019. DOI: 10.11888/Meteoro.tpdc.270961. |
彭守璋. 中国1 km分辨率逐月平均气温数据集(1901-2017). 国家青藏高原科学数据中心, 2019. DOI: 10.11888/Meteoro.tpdc.270961. | |
27 | Peng S Z. 1 km monthly precipitation dataset for China (1901-2017). National Tibetan Plateau Data Center, 2020. DOI: 10.11888/Meteoro.tpdc.270961. |
彭守璋. 中国1 km分辨率逐月降水量数据集(1901-2017). 国家青藏高原科学数据中心, 2020. DOI: 10.5281/zenodo.3185722. | |
28 | Wu G, Guan K, Jiang C, et al. Radiance-based NIRv as a proxy for GPP of corn and soybean. Environmental Research Letters, 2020, 15(3): 34009-34010. |
29 | Mudge J F, Baker L F, Edge C B, et al. Setting an optimal α that minimizes errors in null hypothesis significance tests. PLoS One, 2012, 7(2): e32734. |
30 | Wu S S, Yao Z J, Jiang L G, et al. The spatial-temporal variations and hydrological effects of vegetation NPP based on MODIS in the source region of the Yangtze River. Journal of Natural Resources, 2016, 31(1): 39-51. |
吴珊珊, 姚治君, 姜丽光, 等. 基于MODIS的长江源植被NPP时空变化特征及其水文效应. 自然资源学报, 2016, 31(1): 39-51. | |
31 | Liu G, Sun R, Xiao Z Q, et al. Analysis of spatial and temporal variation of net primary productivity and climate controls in China from 2001 to 2014. Acta Ecological Sinica, 2017, 37(15): 4936-4945. |
刘刚, 孙睿, 肖志强, 等. 2001-2014年中国植被净初级生产力时空变化及其与气象因素的关系. 生态学报, 2017, 37(15): 4936-4945. | |
32 | Xu J, Chen H L, Shang S S, et al. Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model. Arid Land Geography, 2020, 43(3): 592-601. |
许洁, 陈惠玲, 商沙沙, 等. 2000-2014年青藏高原植被净初级生产力时空变化及对气候变化的响应. 干旱区地理, 2020, 43(3): 592-601. | |
33 | Han B H, Zhou B R, Yan Y Q, et al. Analysis of vegetation coverage change and its driving factors over Tibetan Plateau from 2000 to 2018. Acta Agrestia Sinica, 2019, 27(6): 1651-1658. |
韩炳宏, 周秉荣, 颜玉倩, 等. 2000-2018年间青藏高原植被覆盖变化及其与气候因素的关系分析. 草地学报, 2019, 27(6): 1651-1658. | |
34 | Liu Q R. Spatial and temporal variations of terrestrial gross pirmary productivity and underlying driving factors in China. Nanjing: Nanjing University, 2017. |
刘青瑞. 中国陆地生态系统总初级生产力变化趋势及成因分析.南京: 南京大学, 2017. | |
35 | Anav A, Friedlingstein P, Beer C, et al. Spatiotemporal patterns of terrestrial gross primary production. Reviews of Geophysics, 2015, 53(3): 785-818. |
36 | Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2(2): 122-129. |
37 | Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 2016, 7(1): 349-396. |
38 | Chen M J, Ju W, Ciais P, et al. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 2019, 10(20): 511-526. |
39 | Jung M, Reichstein M, Margolis H A. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 2011, 116(G3): DOI: 10.1029/2010JG001566. |
40 | Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production. BioScience, 2004, 54(6): 547. |
[1] | 乌尼图, 刘桂香, 杨勇, 宋向阳, 白海花. 基于光能利用率模型的内蒙古天然草原植被净初级生产力动态监测与气候因子的响应[J]. 草业学报, 2020, 29(11): 1-10. |
[2] | 沈贝贝, 丁蕾, 李振旺, 辛晓平, 徐大伟, 朱晓昱, 王旭, 陈宝瑞. 呼伦贝尔草原净初级生产力时空变化及气候响应分析[J]. 草业学报, 2019, 28(5): 1-14. |
[3] | 葛静, 孟宝平, 杨淑霞, 高金龙, 殷建鹏, 张仁平, 冯琦胜, 梁天刚. 基于ADC和MODIS遥感数据的高寒草地地上生物量监测研究——以黄河源区为例[J]. 草业学报, 2017, 26(7): 23-34. |
[4] | 葛静, 孟宝平, 杨淑霞, 高金龙, 冯琦胜, 梁天刚, 黄晓东, 高新华, 李文龙, 张仁平, 王云龙. 基于UAV技术和MODIS遥感数据的高寒草地盖度动态变化监测研究—以黄河源东部地区为例[J]. 草业学报, 2017, 26(3): 1-12. |
[5] | 孟宝平, 崔霞, 杨淑霞, 高金龙, 胡远宁, 陈思宇, 梁天刚. 基于Landsat 8 OLI和MODIS数据的高寒草地盖度升尺度效应研究——以夏河县桑科草原试验区为[J]. 草业学报, 2016, 25(7): 1-12. |
[6] | 马琳雅,崔霞,冯琦胜,梁天刚. 2001-2011年甘南草地植被覆盖度动态变化分析[J]. 草业学报, 2014, 23(4): 1-9. |
[7] | 刘艳,杨耘,李杨. 分层变端元混合像元分解的新疆北部积雪分量制图研究[J]. 草业学报, 2014, 23(4): 300-310. |
[8] | 王莺,王劲松,姚玉璧,赵福年. 基于温度植被干旱指数的广东省旱情动态监测[J]. 草业学报, 2014, 23(2): 98-107. |
[9] | 王玮,黄晓东,吕志邦,梁天刚. 基于MODIS和AMER-E资料的青藏高原牧区雪被制图研究[J]. 草业学报, 2013, 22(4): 227-238. |
[10] | 陈梦蝶,黄晓东,侯秀敏,冯琦胜,于惠,郭正刚,梁天刚. 青海省草原鼠害区域草地生物量及盖度动态监测研究[J]. 草业学报, 2013, 22(4): 247-256. |
[11] | 王浩,李文龙,杜国祯,朱晓丽. 基于3S技术的甘南草地覆盖度动态变化研究[J]. 草业学报, 2012, 21(3): 26-37. |
[12] | 宋春桥,游松财,刘高焕,柯灵红,钟新科. 那曲地区草地植被时空格局与变化及其人文因素影响研究[J]. 草业学报, 2012, 21(3): 1-10. |
[13] | 付刚,沈振西,张宪洲,石培礼,何永涛,武建双,周宇庭 . 基于MODIS算法的藏北高寒草甸的光能利用效率模拟[J]. 草业学报, 2012, 21(1): 239-247. |
[14] | 王圆圆,王猛,李贵才,王军邦,杨忠东,戎志国. 基于野外观测和TM数据的锡林浩特典型草原MODIS/LAI产品验证[J]. 草业学报, 2011, 20(4): 252-260. |
[15] | 王莺,夏文韬,梁天刚,王超2. 基于MODIS植被指数的甘南草地净初级生产力时空变化研究[J]. 草业学报, 2010, 19(1): 201-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||