欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2021, Vol. 30 ›› Issue (6): 16-27.DOI: 10.11686/cyxb2020354

• 研究论文 • 上一篇    下一篇

2000-2019年青海地区植被总初级生产力遥感估算及时空变化分析

林小丁(), 常乐, 冯丹()   

  1. 伊犁师范大学化学与环境科学学院,新疆 伊犁 835000
  • 收稿日期:2020-07-28 修回日期:2020-10-26 出版日期:2021-05-21 发布日期:2021-05-21
  • 通讯作者: 冯丹
  • 作者简介:Corresponding author. E-mail: fdlady@163.com
    林小丁(1999-),女,浙江文成人,在读本科。E-mail: linxiaodinglxd@163.com
  • 基金资助:
    新疆维吾尔自治区高校科研计划项目(XJEDU2017M035)

Remote-sensing estimation of vegetation gross primary productivity and its spatiotemporal changes in Qinghai Province from 2000 to 2019

Xiao-ding LIN(), Le CHANG, Dan FENG()   

  1. College of Chemistry and Environmental Science,Yili Normal University,Yili 835000,China
  • Received:2020-07-28 Revised:2020-10-26 Online:2021-05-21 Published:2021-05-21
  • Contact: Dan FENG

摘要:

青海作为三江源所在地,监测其生态系统变化对我国的生态文明建设具有战略意义。植被总初级生产力(GPP)是陆地生态系统碳循环的重要组分。采用MODIS卫星遥感数据和土壤背景校正NIRv模型,结合3个地面站点的通量观测数据,估算了2000-2019年青海地区的GPP,并结合土地利用数据和气象数据分析了其时空分异特征及对气候变化的响应。结果表明:1)土壤背景校正NIRv模型估算的青海地区GPP与地面实测GPP数据呈良好线性关系(R2=0.91, P<0.001),相较于MODIS GPP产品,估算的GPP在青海地区更具有适用性。2)2000-2019年青海地区植被GPP多年平均值为140.5 Tg C·yr-1,年均GPP整体处于上升趋势,年增长率为1.25 Tg C·yr-1 P<0.05)。3)青海地区GPP空间分布呈由西向东显著增加趋势,不同植被类型的GPP值年际变化表现出较大差异。4)整体上,年均气温与GPP变化的相关性高于平均降水量,气象因素对不同植被GPP的影响存在明显空间异质性。

关键词: 植被总初级生产力, 土壤背景校正NIRv模型, MODIS, 青海地区

Abstract:

The Qinghai region is the source of the Yangtze, Yellow, and Lancang rivers, and covers an area of 722300 km2. Monitoring information on the spatiotemporal variability of local ecosystems is strategically significant for the evolution of sophisticated future ecological management in China. Vegetation gross primary production (GPP) is the key component of the terrestrial ecosystem carbon cycle. A recent study has found that a vegetation index, the near-infrared radiance of vegetation (NIRv), is a good proxy of GPP. Using MODIS satellite remote sensing data, a soil-adjusted NIRv model, and ground flux observation data for three sites, we estimated the GPP across Qinghai from 2000 to 2019. We also analyzed its spatial and temporal variations and responses to climate change leveraging land cover data and meteorological data. The results indicate that: 1) GPP estimations by the soil-adjusted NIRv model agree well with ground observations (R2=0.91, P<0.001), and is more suitable than MODIS GPP products for this area. 2) The multi-year averaged GPP across the Qinghai region is 140.5 Tg C·yr-1, with a significant increasing trend of 1.25 Tg C·yr-1P<0.05), from 2000 to 2019. 3) The spatial distribution of GPP in Qinghai is characterized by an increase from west to east. Significant difference exists in the interannual variations in GPP, depending on land cover types. 4) Overall, GPP has a higher correlation with temperature than with precipitation, but such correlation also shows substantial spatial variation.

Key words: vegetation gross primary productivity, soil adjusted NIRvmodel, MODIS, Qinghai region