草业学报 ›› 2022, Vol. 31 ›› Issue (8): 178-187.DOI: 10.11686/cyxb2021311
• 研究论文 • 上一篇
收稿日期:
2021-08-19
修回日期:
2021-10-11
出版日期:
2022-08-20
发布日期:
2022-07-01
通讯作者:
姚拓
作者简介:
E-mail: yaotuo@gsau.edu.cn基金资助:
Received:
2021-08-19
Revised:
2021-10-11
Online:
2022-08-20
Published:
2022-07-01
Contact:
Tuo YAO
摘要:
为获得优良植物根际促生菌(PGPR)并明确其促生特性,以红原地区广泛分布的3种高寒草地优势植物为材料,采用选择性培养基从3种高寒植物根际分离、筛选具有固氮、溶磷、分泌植物激素能力的耐低温植物根际促生菌,并进行16S rRNA分子生物学鉴定。结果表明:毛稃羊茅、洽草、紫穗鹅观草植物根际分布着大量根际细菌,且PGPR在根际不同部位的数量呈现出根系表面(RP)>根表土壤(RS)>根内(HP)的分布规律。经筛选共获得76株PGPR菌株,其中固氮菌30株,其固氮酶活性为124.61~311.04 nmol C2H4·h-1·mL-1;溶解无机磷菌株24株,溶解有机磷菌株22株,溶磷量分别为249.85~558.07 μg·mL-1和52.25~158.77 μg·mL-1。挑选固氮酶活性较高、溶磷能力较强的27株PGPR菌株进行分泌植物激素能力测定,26株菌株具有分泌赤霉素(GA3)的能力,分泌量为0.60~52.91 μg·mL-1,分泌吲哚-3-乙酸(IAA)菌株18株,分泌量为0.11~1.53 μg·mL-1,分泌玉米素(t-Z)含量均小于0.31 μg·mL-1。筛选出综合性能优良的菌株14株,经鉴定分别属于假单胞菌属、不动杆菌属、假节杆菌属、贪噬菌属。研究结果可为研制适合高寒地区植被恢复的微生物肥料提供宝贵的菌种资源及理论基础。
刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8): 178-187.
Xiao-ting LIU, Tuo YAO. Screening, identification and characteristics of low-temperature-tolerant plant growth promoting rhizobacteria in alpine meadow[J]. Acta Prataculturae Sinica, 2022, 31(8): 178-187.
图1 细菌菌株在植物根际的分布情况RS: 根表土壤Soil adhering to root; RP: 根系表面Rhizoplan or surface of roots; HP: 根内Histoplan or interior of roots. 下同The same below.
Fig.1 The distribution of bacteria strains in rhizosphere of plant
菌株 Strain | 部位 Part | pH | 固氮酶活性NA (nmol·h-1·mL-1) | 菌株 Strain | 部位 Part | pH | 固氮酶活性NA (nmol·h-1·mL-1) |
---|---|---|---|---|---|---|---|
NCM3 | HP | 产碱Alkali-producing | 124.61±2.79h | NBQ6 | RP | 中性Neutral | 169.22±3.11bcdefg |
NCM4 | HP | 产酸Acid-producing | 133.62±10.09fgh | NBQ7 | RP | 产酸Acid-producing | 150.69±13.77bcdefgh |
NCZ1 | HP | 产碱Alkali-producing | 311.04±2.82a | NBQ9 | RP | 产酸Acid-producing | 146.73±18.59cdefgh |
NCQ2 | HP | 产酸Acid-producing | 176.81±1.91bcde | NAM6 | RS | 产碱Alkali-producing | 180.82±4.14bcde |
NCQ3 | HP | 中性Neutral | 168.94±1.35bcdefg | NAM7 | RS | 产酸Acid-producing | 187.22±8.46bc |
NCQ4 | HP | 产碱Alkali-producing | 132.09±1.11gh | NAZ1 | RS | 产碱Alkali-producing | 143.39±6.06defgh |
NCQ6 | HP | 中性Neutral | 162.57±5.15bcdefgh | NAZ4 | RS | 产酸Acid-producing | 159.55±13.20bcdefgh |
NCQ7 | HP | 产碱Alkali-producing | 154.59±6.16bcdefgh | NAZ6 | RS | 产碱Alkali-producing | 151.59±2.90bcdefgh |
NCQ9 | HP | 产碱Alkali-producing | 140.92±6.32efgh | NAZ9 | RS | 产酸Acid-producing | 169.49±8.19bcdefg |
NAQ6 | RS | 产碱Alkali-producing | 159.82±3.07bcdefgh | NAZ11 | RS | 产酸Acid-producing | 188.74±6.27b |
NAQ8 | RS | 产碱Alkali-producing | 146.53±3.86cdefgh | NAZ12 | RS | 产碱Alkali-producing | 155.83±5.65bcdefgh |
NAQ9 | RS | 产酸Acid-producing | 159.78±6.30bcdefgh | NAZ16 | RS | 产碱Alkali-producing | 179.56±0.79bcde |
NAQ11 | RS | 产碱Alkali-producing | 150.14±6.72bcdefgh | NAZ17 | RS | 产碱Alkali-producing | 150.03±10.05bcdefgh |
NAQ15 | RS | 产酸Acid-producing | 187.31±7.58bc | NAZ19 | RS | 中性Neutral | 183.73±4.37bcd |
NBZ7 | RP | 产碱Alkali-producing | 173.12±1.39bcdef | NBM5 | RP | 产酸Acid-producing | 165.47±6.77bcdefg |
表1 固氮菌株固氮酶活性
Table 1 Nitrogenase activity of nitrogen-fixing strains (mean±SE)
菌株 Strain | 部位 Part | pH | 固氮酶活性NA (nmol·h-1·mL-1) | 菌株 Strain | 部位 Part | pH | 固氮酶活性NA (nmol·h-1·mL-1) |
---|---|---|---|---|---|---|---|
NCM3 | HP | 产碱Alkali-producing | 124.61±2.79h | NBQ6 | RP | 中性Neutral | 169.22±3.11bcdefg |
NCM4 | HP | 产酸Acid-producing | 133.62±10.09fgh | NBQ7 | RP | 产酸Acid-producing | 150.69±13.77bcdefgh |
NCZ1 | HP | 产碱Alkali-producing | 311.04±2.82a | NBQ9 | RP | 产酸Acid-producing | 146.73±18.59cdefgh |
NCQ2 | HP | 产酸Acid-producing | 176.81±1.91bcde | NAM6 | RS | 产碱Alkali-producing | 180.82±4.14bcde |
NCQ3 | HP | 中性Neutral | 168.94±1.35bcdefg | NAM7 | RS | 产酸Acid-producing | 187.22±8.46bc |
NCQ4 | HP | 产碱Alkali-producing | 132.09±1.11gh | NAZ1 | RS | 产碱Alkali-producing | 143.39±6.06defgh |
NCQ6 | HP | 中性Neutral | 162.57±5.15bcdefgh | NAZ4 | RS | 产酸Acid-producing | 159.55±13.20bcdefgh |
NCQ7 | HP | 产碱Alkali-producing | 154.59±6.16bcdefgh | NAZ6 | RS | 产碱Alkali-producing | 151.59±2.90bcdefgh |
NCQ9 | HP | 产碱Alkali-producing | 140.92±6.32efgh | NAZ9 | RS | 产酸Acid-producing | 169.49±8.19bcdefg |
NAQ6 | RS | 产碱Alkali-producing | 159.82±3.07bcdefgh | NAZ11 | RS | 产酸Acid-producing | 188.74±6.27b |
NAQ8 | RS | 产碱Alkali-producing | 146.53±3.86cdefgh | NAZ12 | RS | 产碱Alkali-producing | 155.83±5.65bcdefgh |
NAQ9 | RS | 产酸Acid-producing | 159.78±6.30bcdefgh | NAZ16 | RS | 产碱Alkali-producing | 179.56±0.79bcde |
NAQ11 | RS | 产碱Alkali-producing | 150.14±6.72bcdefgh | NAZ17 | RS | 产碱Alkali-producing | 150.03±10.05bcdefgh |
NAQ15 | RS | 产酸Acid-producing | 187.31±7.58bc | NAZ19 | RS | 中性Neutral | 183.73±4.37bcd |
NBZ7 | RP | 产碱Alkali-producing | 173.12±1.39bcdef | NBM5 | RP | 产酸Acid-producing | 165.47±6.77bcdefg |
菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH | 菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH |
---|---|---|---|---|---|---|---|---|---|
PAM2 | RS | 2.59±0.04d | 322.59±3.44k | 4.76±0.02cdef | PBQ6 | RP | 3.32±0.01ab | 272.14±3.20l | 4.27±0.05k |
PAM5 | RS | 2.34±0.05e | 321.08±4.90k | 4.47±0.02ghijk | PAQ1 | RS | 1.69±0.02j | 399.87±8.72fg | 4.66±0.02defgh |
PAM9 | RS | 3.36±0.02a | 387.60±0.21gh | 4.93±0.03abc | PAQ2 | RS | 1.51±0.01l | 361.13±7.23j | 4.93±0.07abc |
PAM11 | RS | 3.25±0.04b | 249.85±4.38m | 4.84±0.03bcde | PAQ3 | RS | 2.22±0.03f | 433.47±3.95e | 4.40±0.01ijk |
PAM12 | RS | 2.02±0.01h | 361.12±2.34j | 4.90±0.01abcd | PAQ4 | RS | 1.70±0.01j | 509.77±5.06bc | 4.34±0.02jk |
PAM15 | RS | 2.24±0.01f | 330.77±0.65k | 4.43±0.30hijk | PAQ7 | RS | 1.98±0.01h | 527.19±7.97b | 4.70±0.02cdefg |
PBM3 | RP | 2.12±0.01g | 363.56±2.90ij | 4.77±0.02cde | PAQ8 | RS | 2.22±0.02f | 491.68±8.40cd | 4.75±0.01cdef |
PBM5 | RP | 1.59±0.02k | 339.34±1.91k | 5.03±0.00ab | PAQ14 | RS | 2.75±0.03c | 319.89±4.78k | 4.71±0.02cdefg |
PBM6 | RP | 2.74±0.02c | 378.89±8.67ghi | 5.10±0.02a | PAZ2 | RS | 1.83±0.00i | 498.46±8.47cd | 4.82±0.01bcde |
PBQ1 | RP | 2.17±0.03fg | 414.58±2.35ef | 4.52±0.02fghij | PAZ10 | RS | 2.15±0.01fg | 480.82±10.92d | 4.90±0.05abcd |
PBQ3 | RP | 2.39±0.01e | 381.58±2.66ghi | 4.62±0.01efghi | PAZ16 | RS | 1.51±0.03l | 424.40±1.91e | 4.31±0.08jk |
PBQ4 | RP | 2.74±0.01c | 399.25±4.85fg | 4.06±0.01l | PAZ17 | RS | 1.85±0.02i | 558.07±6.97a | 4.59±0.01efghi |
表2 溶磷菌株溶解无机磷能力
Table 2 The capacity of dissolving inorganic phosphorus of phosphate-solubilizing strains
菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH | 菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH |
---|---|---|---|---|---|---|---|---|---|
PAM2 | RS | 2.59±0.04d | 322.59±3.44k | 4.76±0.02cdef | PBQ6 | RP | 3.32±0.01ab | 272.14±3.20l | 4.27±0.05k |
PAM5 | RS | 2.34±0.05e | 321.08±4.90k | 4.47±0.02ghijk | PAQ1 | RS | 1.69±0.02j | 399.87±8.72fg | 4.66±0.02defgh |
PAM9 | RS | 3.36±0.02a | 387.60±0.21gh | 4.93±0.03abc | PAQ2 | RS | 1.51±0.01l | 361.13±7.23j | 4.93±0.07abc |
PAM11 | RS | 3.25±0.04b | 249.85±4.38m | 4.84±0.03bcde | PAQ3 | RS | 2.22±0.03f | 433.47±3.95e | 4.40±0.01ijk |
PAM12 | RS | 2.02±0.01h | 361.12±2.34j | 4.90±0.01abcd | PAQ4 | RS | 1.70±0.01j | 509.77±5.06bc | 4.34±0.02jk |
PAM15 | RS | 2.24±0.01f | 330.77±0.65k | 4.43±0.30hijk | PAQ7 | RS | 1.98±0.01h | 527.19±7.97b | 4.70±0.02cdefg |
PBM3 | RP | 2.12±0.01g | 363.56±2.90ij | 4.77±0.02cde | PAQ8 | RS | 2.22±0.02f | 491.68±8.40cd | 4.75±0.01cdef |
PBM5 | RP | 1.59±0.02k | 339.34±1.91k | 5.03±0.00ab | PAQ14 | RS | 2.75±0.03c | 319.89±4.78k | 4.71±0.02cdefg |
PBM6 | RP | 2.74±0.02c | 378.89±8.67ghi | 5.10±0.02a | PAZ2 | RS | 1.83±0.00i | 498.46±8.47cd | 4.82±0.01bcde |
PBQ1 | RP | 2.17±0.03fg | 414.58±2.35ef | 4.52±0.02fghij | PAZ10 | RS | 2.15±0.01fg | 480.82±10.92d | 4.90±0.05abcd |
PBQ3 | RP | 2.39±0.01e | 381.58±2.66ghi | 4.62±0.01efghi | PAZ16 | RS | 1.51±0.03l | 424.40±1.91e | 4.31±0.08jk |
PBQ4 | RP | 2.74±0.01c | 399.25±4.85fg | 4.06±0.01l | PAZ17 | RS | 1.85±0.02i | 558.07±6.97a | 4.59±0.01efghi |
菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH | 菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH |
---|---|---|---|---|---|---|---|---|---|
MAM1 | RS | 1.87±0.01d | 57.17±0.12f | 2.88±0.06i | MAZ12 | RS | 1.98±0.02c | 88.04±3.14de | 3.54±0.04def |
MCZ1 MCM2 | HP HP | 1.52±0.02gh 2.02±0.01c | 52.25±0.85f 85.95±4.86de | 3.67±0.05cd 3.37±0.02f | MAZ14 MAZ15 | RS RS | 1.50±0.00h 1.52±0.02gh | 87.55±2.13de 80.91±2.46de | 3.20±0.01g 3.62±0.03cde |
MBM5 MBM11 MBQ2 MBQ3 MBQ4 MBQ10 MBQ13 MBQ20 | RP RP RP RP RP RP RP RP | 1.70±0.01ef 1.50±0.00h 2.24±0.00a 2.13±0.01b 1.73±0.01e 1.58±0.01g 1.88±0.05d 1.57±0.00g | 158.77±0.65a 80.66±2.37de 81.53±1.39de 109.45±0.21c 72.92±2.22e 87.92±0.12de 87.18±2.52de 88.29±5.35de | 3.73±0.03cd 3.80±0.02c 4.08±0.01b 3.80±0.00c 3.56±0.02def 3.51±0.04def 3.72±0.03cd 3.41±0.03ef | MAZ19 MAQ2 MAQ10 MAQ11 MAQ13 MAQ15 MAQ19 MAQ23 | RS RS RS RS RS RS RS RS | 1.69±0.01ef 1.87±0.02d 1.85±0.01d 1.65±0.02f 1.85±0.01d 2.16±0.01b 1.87±0.01d 1.56±0.00gh | 83.12±3.56de 70.95±4.73e 94.93±2.10d 74.76±7.62e 80.66±2.58de 76.11±5.11e 81.65±1.81de 140.57±3.78b | 3.73±0.01cd 3.59±0.12cde 3.71±0.07cd 4.34±0.11a 3.62±0.02cde 3.69±0.03cd 3.06±0.02h 3.39±0.06f |
表3 溶磷菌株溶解有机磷能力
Table 3 The capacity of dissolving organic phosphorus of phosphate-solubilizing strains
菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH | 菌株Strain | 部位 Part | D/d | 溶磷量PSC (μg·mL-1) | pH |
---|---|---|---|---|---|---|---|---|---|
MAM1 | RS | 1.87±0.01d | 57.17±0.12f | 2.88±0.06i | MAZ12 | RS | 1.98±0.02c | 88.04±3.14de | 3.54±0.04def |
MCZ1 MCM2 | HP HP | 1.52±0.02gh 2.02±0.01c | 52.25±0.85f 85.95±4.86de | 3.67±0.05cd 3.37±0.02f | MAZ14 MAZ15 | RS RS | 1.50±0.00h 1.52±0.02gh | 87.55±2.13de 80.91±2.46de | 3.20±0.01g 3.62±0.03cde |
MBM5 MBM11 MBQ2 MBQ3 MBQ4 MBQ10 MBQ13 MBQ20 | RP RP RP RP RP RP RP RP | 1.70±0.01ef 1.50±0.00h 2.24±0.00a 2.13±0.01b 1.73±0.01e 1.58±0.01g 1.88±0.05d 1.57±0.00g | 158.77±0.65a 80.66±2.37de 81.53±1.39de 109.45±0.21c 72.92±2.22e 87.92±0.12de 87.18±2.52de 88.29±5.35de | 3.73±0.03cd 3.80±0.02c 4.08±0.01b 3.80±0.00c 3.56±0.02def 3.51±0.04def 3.72±0.03cd 3.41±0.03ef | MAZ19 MAQ2 MAQ10 MAQ11 MAQ13 MAQ15 MAQ19 MAQ23 | RS RS RS RS RS RS RS RS | 1.69±0.01ef 1.87±0.02d 1.85±0.01d 1.65±0.02f 1.85±0.01d 2.16±0.01b 1.87±0.01d 1.56±0.00gh | 83.12±3.56de 70.95±4.73e 94.93±2.10d 74.76±7.62e 80.66±2.58de 76.11±5.11e 81.65±1.81de 140.57±3.78b | 3.73±0.01cd 3.59±0.12cde 3.71±0.07cd 4.34±0.11a 3.62±0.02cde 3.69±0.03cd 3.06±0.02h 3.39±0.06f |
菌株Strain | 赤霉素GA3 | 吲哚-3-乙酸IAA | 玉米素t-Z | 菌株Strain | 赤霉素GA3 | 吲哚-3-乙酸IAA | 玉米素t-Z |
---|---|---|---|---|---|---|---|
PAZ10 | - | 0.13±0.01fg | 0.13±0.01bc | MAQ19 | 2.59±0.87gh | - | 0.18±0.01b |
PAZ17 | 26.07±1.92c | 0.39±0.08c | 0.19±0.00ab | MBM11 | 1.60±0.09h | 0.11±0.01g | 0.21±0.00ab |
PAM9 | 19.62±1.27d | 0.15±0.01fg | 0.11±0.00c | MCZ1 | 3.04±0.18gh | 0.77±0.05b | 0.14±0.02bc |
PAQ2 | 52.91±3.85a | 0.34±0.03cd | - | NAQ6 | 4.40±0.94fgh | - | 0.31±0.13a |
PAQ3 | 5.68±0.28fgh | - | 0.12±0.00bc | NAQ11 | 14.73±1.07e | 0.18±0.04fg | - |
PAQ7 | 3.37±0.42gh | - | 0.22±0.01ab | NAQ15 | 1.82±0.62h | - | 0.12±0.00bc |
PBQ4 | 3.29±1.20gh | 0.14±0.01fg | 0.16±0.02bc | NAZ12 | 33.98±2.50b | - | 0.12±0.01bc |
PBM6 | 0.78±0.01h | 0.15±0.01fg | 0.26±0.07ab | NAZ17 | 1.10±0.00h | 0.12±0.01fg | 0.11±0.00c |
MAQ10 | 3.76±0.24gh | 0.12±0.01fg | 0.16±0.05bc | NAM6 | 1.77±0.12h | 0.12±0.01fg | 0.16±0.03bc |
MAZ14 | 0.60±0.04h | 0.30±0.02cde | 0.12±0.01bc | NBQ7 | 1.10±0.01h | 0.13±0.01fg | 0.14±0.00bc |
MAZ15 | 8.61±0.60f | 0.26±0.02efg | 0.15±0.01bc | NBQ9 | 3.39±1.31gh | - | 0.13±0.00bc |
MAQ23 MBQ3 MBQ13 | 0.71±0.04h 2.80±0.00gh 20.56±1.50d | - - 0.17±0.01fg | 0.12±0.00bc 0.11±0.01c - | NBM5 NCZ1 | 7.89±0.75fg 2.05±0.24h | 0.21±0.02fg 1.53±0.11a | 0.14±0.03bc - |
表4 PGPR菌株分泌激素能力
Table 4 The capacity of PGPR strains to secrete hormones (μg·mL-1)
菌株Strain | 赤霉素GA3 | 吲哚-3-乙酸IAA | 玉米素t-Z | 菌株Strain | 赤霉素GA3 | 吲哚-3-乙酸IAA | 玉米素t-Z |
---|---|---|---|---|---|---|---|
PAZ10 | - | 0.13±0.01fg | 0.13±0.01bc | MAQ19 | 2.59±0.87gh | - | 0.18±0.01b |
PAZ17 | 26.07±1.92c | 0.39±0.08c | 0.19±0.00ab | MBM11 | 1.60±0.09h | 0.11±0.01g | 0.21±0.00ab |
PAM9 | 19.62±1.27d | 0.15±0.01fg | 0.11±0.00c | MCZ1 | 3.04±0.18gh | 0.77±0.05b | 0.14±0.02bc |
PAQ2 | 52.91±3.85a | 0.34±0.03cd | - | NAQ6 | 4.40±0.94fgh | - | 0.31±0.13a |
PAQ3 | 5.68±0.28fgh | - | 0.12±0.00bc | NAQ11 | 14.73±1.07e | 0.18±0.04fg | - |
PAQ7 | 3.37±0.42gh | - | 0.22±0.01ab | NAQ15 | 1.82±0.62h | - | 0.12±0.00bc |
PBQ4 | 3.29±1.20gh | 0.14±0.01fg | 0.16±0.02bc | NAZ12 | 33.98±2.50b | - | 0.12±0.01bc |
PBM6 | 0.78±0.01h | 0.15±0.01fg | 0.26±0.07ab | NAZ17 | 1.10±0.00h | 0.12±0.01fg | 0.11±0.00c |
MAQ10 | 3.76±0.24gh | 0.12±0.01fg | 0.16±0.05bc | NAM6 | 1.77±0.12h | 0.12±0.01fg | 0.16±0.03bc |
MAZ14 | 0.60±0.04h | 0.30±0.02cde | 0.12±0.01bc | NBQ7 | 1.10±0.01h | 0.13±0.01fg | 0.14±0.00bc |
MAZ15 | 8.61±0.60f | 0.26±0.02efg | 0.15±0.01bc | NBQ9 | 3.39±1.31gh | - | 0.13±0.00bc |
MAQ23 MBQ3 MBQ13 | 0.71±0.04h 2.80±0.00gh 20.56±1.50d | - - 0.17±0.01fg | 0.12±0.00bc 0.11±0.01c - | NBM5 NCZ1 | 7.89±0.75fg 2.05±0.24h | 0.21±0.02fg 1.53±0.11a | 0.14±0.03bc - |
菌株 Strain | 片段长度 Length (bp) | 同源性最高序列的菌株 Strains with the highest homology sequence | 相似度 Similarity (%) | 来源 Source | 部位 Part |
---|---|---|---|---|---|
PAZ10 | 1444 | P. kairouanensis KC12T (LR031357) | 99.86 | 紫穗鹅观草R. purpurascens | RS |
PAZ17 | 1441 | P. yamanorum 8H1T (EU557337) | 99.16 | 紫穗鹅观草R. purpurascens | RS |
NAZ17 | 1443 | 猴假单胞菌P. simiae OLiT (AJ936933) | 99.55 | 紫穗鹅观草R. purpurascens | RS |
MAZ15 | 1441 | P. piscium P50T (LR797558) | 99.19 | 紫穗鹅观草R. purpurascens | RS |
NCZ1 | 1435 | Pseudarthrobacter psychrotolerans YJ56T (MN559964) | 99.20 | 紫穗鹅观草R. purpurascens | HP |
NAQ6 | 1440 | P. mohnii DSM18327T (FNRV01000001) | 99.10 | 洽草K. cristata | RS |
PBQ4 | 1443 | 东湖假单胞菌P. donghuensis HYST (AJJP01000212) | 98.75 | 洽草K. cristata | RP |
MAQ23 | 1443 | P. sesame SI-P133T (EU912472) | 98.26 | 洽草K. cristata | RS |
PAQ2 | 1441 | P. neuropathica P155T (LR797591) | 98.86 | 洽草K. cristata | RS |
MAQ10 | 1442 | 醋酸钙不动杆菌A. calcoaceticus DSM30006T (AIEC01000170) | 99.65 | 洽草K. cristata | RS |
MAQ19 | 1442 | P. paralactis DSM29164T (KP756921) | 99.08 | 洽草K. cristata | RS |
PBM6 | 1443 | P. graminis DSM 11363T(Y11150) | 98.54 | 毛稃羊茅F. kirilowii | RP |
MBM11 | 1443 | P. piscium P50T (LR797558) | 99.59 | 毛稃羊茅F. kirilowii | RP |
NAM6 | 1440 | V. beijingensis 502T (MG820624) | 97.96 | 毛稃羊茅F. kirilowii | RS |
表5 优良PGPR菌株分子生物学鉴定
Table 5 Molecular biology identification of excellent PGPR strains
菌株 Strain | 片段长度 Length (bp) | 同源性最高序列的菌株 Strains with the highest homology sequence | 相似度 Similarity (%) | 来源 Source | 部位 Part |
---|---|---|---|---|---|
PAZ10 | 1444 | P. kairouanensis KC12T (LR031357) | 99.86 | 紫穗鹅观草R. purpurascens | RS |
PAZ17 | 1441 | P. yamanorum 8H1T (EU557337) | 99.16 | 紫穗鹅观草R. purpurascens | RS |
NAZ17 | 1443 | 猴假单胞菌P. simiae OLiT (AJ936933) | 99.55 | 紫穗鹅观草R. purpurascens | RS |
MAZ15 | 1441 | P. piscium P50T (LR797558) | 99.19 | 紫穗鹅观草R. purpurascens | RS |
NCZ1 | 1435 | Pseudarthrobacter psychrotolerans YJ56T (MN559964) | 99.20 | 紫穗鹅观草R. purpurascens | HP |
NAQ6 | 1440 | P. mohnii DSM18327T (FNRV01000001) | 99.10 | 洽草K. cristata | RS |
PBQ4 | 1443 | 东湖假单胞菌P. donghuensis HYST (AJJP01000212) | 98.75 | 洽草K. cristata | RP |
MAQ23 | 1443 | P. sesame SI-P133T (EU912472) | 98.26 | 洽草K. cristata | RS |
PAQ2 | 1441 | P. neuropathica P155T (LR797591) | 98.86 | 洽草K. cristata | RS |
MAQ10 | 1442 | 醋酸钙不动杆菌A. calcoaceticus DSM30006T (AIEC01000170) | 99.65 | 洽草K. cristata | RS |
MAQ19 | 1442 | P. paralactis DSM29164T (KP756921) | 99.08 | 洽草K. cristata | RS |
PBM6 | 1443 | P. graminis DSM 11363T(Y11150) | 98.54 | 毛稃羊茅F. kirilowii | RP |
MBM11 | 1443 | P. piscium P50T (LR797558) | 99.59 | 毛稃羊茅F. kirilowii | RP |
NAM6 | 1440 | V. beijingensis 502T (MG820624) | 97.96 | 毛稃羊茅F. kirilowii | RS |
1 | Zhang Z C, Hou G, Liu M, et al. Degradation induces changes in the soil C∶N∶P stoichiometry of alpine steppe on the Tibetan Plateau. Journal of Mountain Science, 2019, 16(10): 2348-2360. |
2 | Sun M J, Li A N, Feng W L, et al. Spatial-temporal pattern changes and ecological effect of wetlands in Hongyuan County. Yellow River, 2018, 40(2): 69-75. |
孙明江, 李爱农, 冯文兰, 等. 红原县湿地时空格局变化及其生态效应. 人民黄河, 2018, 40(2): 69-75. | |
3 | Anuroopa N, Bagyaraj D J, Abhishek B, et al. Inoculation with selected microbial consortia not only enhances growth and yield of Withania somnifera but also reduces fertilizer application by 25 under field conditions. Proceedings of Indian National Science Academy, 2017, 83(4): 957-971. |
4 | Zeng M J, Zhong Y J, Diao Y. Promoting mechanism of plant growth-promoting rhizobacteria in medicinal plants. Biotechnology Bulletin, 2017, 33(11): 13-18. |
曾美娟, 钟永嘉, 刁勇. 药用植物根际促生菌促生机理研究进展. 生物技术通报, 2017, 33(11): 13-18. | |
5 | Li H Y, Qiu Y Z, Yao T, et al. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings. Soil & Tillage Research, 2020, DOI: 10.1016/j.still.2020.104577. |
6 | Zhang M R. Isolation of culturable microorganisms from the rhizosphere of (Allium mongolicum Regel) and screening of PGPR strains. Hohhot: Inner Mongolia University, 2019. |
张美荣. 蒙古韭(Allium mongolicum Regel)根际可培养微生物的分离及PGPR菌株的筛选. 呼和浩特: 内蒙古大学, 2019. | |
7 | Verma P, Yadav A N, Khannam K S, et al. Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Annals of Microbiology, 2015, 65(4): 1885-1899. |
8 | Tahira B, Shafaqat A, Seleiman M F, et al. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 2020, 10(1): 69-75. |
9 | Gao Y M, Yao T, Li H Y, et al. Isolation, screening, and growth promoting characteristics of plant growth promoting rhizobacteria in the rhizosphere of Kobresia myosuroides and Polygonum viviparum in alpine meadow pasture. Acta Prataculturae Sinica, 2019, 28(11): 114-123. |
高亚敏, 姚拓, 李海云, 等. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究. 草业学报, 2019, 28(11): 114-123. | |
10 | Mishra P K, Mishra S, Bisht S C, et al. Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biological Research, 2009, 42(3): 305-313. |
11 | Bharti N, Barnawal D, Awasthi A, et al. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum, 2014, 36(1): 45-60. |
12 | Xu X D, Zhang C, Qin C, et al. Effects of PGPR inoculation on photosynthesis and physiological-ecological characteristics of apple seedlings under drought stress. The Journal of Applied Ecology, 2019, 30(10): 3501-3508. |
13 | Li H Y, Jiang Y M, Yao T, et al. Isolation, screening, identification and growth promoting characteristics of plant growth promoting rhizobacteria of vegetable crops. Journal of Plant Protection, 2018, 45(4): 836-845. |
李海云, 蒋永梅, 姚拓, 等. 蔬菜作物根际促生菌分离筛选、鉴定及促生特性测定. 植物保护学报, 2018, 45(4): 836-845. | |
14 | Shekhar N C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 1998, 170(1): 265-270. |
15 | Qu L L, Peng C L, Li S B. Isolation and screening of a phytate phosphate-solubilizing Paenibacillus sp. and its growth-promoting effect on rice seeding. The Journal of Applied Ecology, 2020, 31(1): 326-332. |
16 | Hafeez F Y, Yasmin S, Ariani D, et al. Plant growth-promoting bacteria as biofertilize. Agronomy for Sustainable Development, 2006, 26(2): 143-150. |
17 | Zhang Y. Screening plant growth promoting rhizobacteria resources and their promotion mechanisms from rhizosphere of four forages in Ali alpine grassland of Tibet. Lanzhou: Gansu Agricultural University, 2013. |
张英. 西藏阿里高寒草原四种牧草根际促生菌资源筛选及促生机理研究. 兰州: 甘肃农业大学, 2013. | |
18 | Piromyou P, Buranabanyat B, Tantasawat P, et al. Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. European Journal of Soil Biology, 2011, 47(1): 44-54. |
19 | Wang M Y. Determination of indole acetic acid content in the fermentation broth using HPLC. Tropical Agricultural Engineering, 2009, 33(5): 1-3. |
王明月. 高效液相色谱法测定发酵液中的吲哚乙酸含量. 热带农业工程, 2009, 33(5): 1-3. | |
20 | Liu T, Yao T, Chen J G, et al. Determination of plant hormones in bacterial fermentation products of plant growth promoting rhizobacteria by solid phase extraction-high performance liquid chromatography. Journal of Analytical Science, 2017, 33(2): 201-206. |
刘婷, 姚拓, 陈建纲, 等. 固相萃取-高效液相色谱法测定植物根际促生菌发酵产物中3种植物激素的含量. 分析科学学报, 2017, 33(2): 201-206. | |
21 | Kamaei R, Faramarzi F, Parsa M, et al. The effects of biological, chemical, and organic fertilizers application on root growth features and grain yield of Sorghum. Journal of Plant Nutrition, 2019, 42(18): 2221-2233. |
22 | Huang J L, Liu Z B, Li S Y, et al. Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. The Journal of General and Applied Microbiology, 2016, 62(5): 258-265. |
23 | Han Y N, Liu R J, Li M. Effects of arbuscular mycorrhizal fungi and PGPR combination agents on growth and defense enzyme activity of cucumber under low temperature stress. China Vegetables, 2014(7): 35-39. |
韩亚楠, 刘润进, 李敏. AM真菌和PGPR菌剂组合对低温胁迫下黄瓜生长及防御酶活性的影响. 中国蔬菜, 2014(7): 35-39. | |
24 | He M. Research on the growth-promoting effect and mechanism of indigenous plant growth-promoting bacteria in northern Tibet on local typical forages. Zhenjiang: Jiangsu University, 2020. |
何敏. 藏北土著植物促生菌对当地典型牧草的促生作用及其机制研究. 镇江: 江苏大学, 2020. | |
25 | Wang S, Dong L Q, Luo Y Y, et al. Characterization of rhizosphere microbial communities in continuous cropping maca (Lepidium meyenii) red soil, Yunnan, China. Archives of Agronomy and Soil Science, 2020, 66(6): 805-818. |
26 | Yao T. Characteristics and biofertilizer of plant growth promoting rhizobacteria isolated from oat and wheat in Northwest China. Lanzhou: Gansu Agricultural University, 2002. |
姚拓. 饲用燕麦和小麦根际促生菌特性研究及其生物菌肥的初步研制. 兰州: 甘肃农业大学, 2002. | |
27 | Ma W W. Screening plant growth promoting rhizobacteria (PGPR) from rhizosphere of grasses and estabilshing their database management system. Lanzhou: Gansu Agricultural University, 2014. |
马文文. 禾草根际促生菌资源筛选及其数据库管理系统构建. 兰州: 甘肃农业大学, 2014. | |
28 | Ma C Y, Zhang Y, Ma W B, et al. Identification of plant growth promoting rhizobacteria Astragalus membranaceus and their effectives. Acta Prataculturae Sinica, 2017, 26(1): 149-159. |
马骢毓, 张英, 马文彬, 等. 黄芪根际促生菌(PGPR)筛选与特性研究. 草业学报, 2017, 26(1): 149-159. | |
29 | Patel D K, Archana G, Kumar G N. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Current Microbiology, 2008, 56(2): 168-174. |
30 | Chen D Y, Li H Q, Zhang B H, et al. Phosphate solubilization activities and action mechanisms of two phosphate-solubilizing bacteria. Chinese Journal of Eco-Agriculture, 2017, 25(3): 410-418. |
陈丹阳, 李汉全, 张炳火, 等. 两株解磷细菌的解磷活性及作用机制研究. 中国生态农业学报, 2017, 25(3): 410-418. | |
31 | Tian Y Z, Ma X L, Li Y T, et al. Relationship between microbial diversity and nitrogenase activity of Stipagrostis pennata rhizosheath. Journal of Cellular Biochemistry, 2019, 120(8): 1-8. |
32 | Kristina L, Abdollah M S. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 2020, 13(5): 1314-1335. |
33 | Ren J, Zhang X, Liang Q Y, et al. Effects of culture conditions on nitrogenase activity of endophytes A02, A08 from cassava and optimization of culture conditions. Southwest China of Journal of Agricultural Sciences, 2019, 32(11): 2571-2578. |
任杰, 张晓, 梁琼月, 等. 不同培养条件对内生菌A02、A08固氮酶活力的影响及培养条件优化. 西南农业学报, 2019, 32(11): 2571-2578. | |
34 | Tomoaki S, Yoichi M, Toshiyuki O, et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 2006, 24(1): 105-109. |
35 | Ge X Y, Sun Z G, Li T, et al. Soil Pseudomonas spp., Bacillus spp., and microbial communities under tomato continuous cropping ingreenhouse production. Journal of Agro-Environment Science, 2016, 35(3): 514-523. |
葛晓颖, 孙志刚, 李涛, 等. 设施番茄连作障碍与土壤芽孢杆菌和假单胞菌及微生物群落的关系分析. 农业环境科学学报, 2016, 35(3): 514-523. | |
36 | He L X Z, Jia Z Q, Liu T, et al. Research progress in plants adaptability towards adversity stress. World Forestry Research, 2018, 31(2): 13-18. |
何凌仙子, 贾志清, 刘涛, 等. 植物适应逆境胁迫研究进展. 世界林业研究, 2018, 31(2): 13-18. |
[1] | 杨志民, 邢瑞, 丁鋆嘉, 庄黎丽. 基于转录组测序的高羊茅分蘖与株高相关差异表达基因分析[J]. 草业学报, 2022, 31(1): 145-163. |
[2] | 吴慧丽, 田薇, 纪燕玲, 娄来清, 蔡庆生. 促进镉吸收积累的植物根际促生菌的筛选及其对一年生黑麦草的影响[J]. 草业学报, 2021, 30(7): 53-61. |
[3] | 魏志敏, 孙斌, 方成, 代子雯, 刘满强, 焦加国, 胡锋, 李辉信, 徐莉. 根瘤菌与固氮菌联合对毛叶苕子的促生效果[J]. 草业学报, 2021, 30(5): 94-102. |
[4] | 贾雨雷, 廖真, 汪丽芳, 卜建超, 林标声, 林辉, 苏德伟, 鲁国东, 林占熺. 化肥减量配施菌草固氮菌肥对巨菌草生长、营养品质及土壤养分的影响[J]. 草业学报, 2021, 30(3): 215-223. |
[5] | 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[6] | 王晓瑜, 丁婷婷, 李彦忠, 段廷玉. AM真菌与根瘤菌对紫花苜蓿镰刀菌萎蔫和根腐病的影响[J]. 草业学报, 2019, 28(8): 139-149. |
[7] | 高亚敏, 姚拓, 李海云, 罗慧琴, 张建贵, 杨琰珊, 刘婷. 高寒草甸嵩草、珠芽蓼根际优良植物根际促生菌的分离筛选及促生特性研究[J]. 草业学报, 2019, 28(11): 114-123. |
[8] | 李海云, 姚拓, 张榕, 张洁, 李智燕, 荣良燕, 路晓雯, 杨晓蕾, 夏东慧, 罗慧琴. 红三叶根际溶磷菌的筛选与培养基优化[J]. 草业学报, 2019, 28(1): 170-179. |
[9] | 李海云,姚拓,张榕,张洁,李智燕,荣良燕,路晓雯,杨晓蕾,夏东慧,罗慧琴. 红三叶根际溶磷菌株分泌有机酸与溶磷能力的相关性研究[J]. 草业学报, 2018, 27(12): 113-121. |
[10] | 李小冬, 王小利, 陈锡, 蔡璐, 曾庆飞, 舒健虹, 蔡一鸣. 转录组解析白三叶根际溶磷菌株RW8的解磷机制[J]. 草业学报, 2017, 26(8): 168-179. |
[11] | 舒健虹, 王普昶, 李显刚, 王小利, 李小冬. 无机磷溶解菌的分离筛选及其对扁穗雀麦生长的影响[J]. 草业学报, 2017, 26(5): 173-180. |
[12] | 蔡璐, 王小利, 陈莹, 王子苑, 李小冬. 无机磷溶解菌RW8的筛选、鉴定及对白三叶促生效果研究[J]. 草业学报, 2017, 26(5): 181-188. |
[13] | 曾庆飞, 王茜, 陆瑞霞, 刘正书, 吴佳海, 王小利. 大豆根际促生菌的分离筛选及其对大豆和百脉根生长与品质的影响[J]. 草业学报, 2017, 26(1): 99-111. |
[14] | 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究[J]. 草业学报, 2016, 25(12): 130-139. |
[15] | 李建宏, 李雪萍, 马文文, 姚拓, 孙建军, 蒋永梅, 张建贵, 师尚礼. 东祁连山高寒草地几种禾本科牧草根际促生菌研究[J]. 草业学报, 2016, 25(11): 173-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||