草业学报 ›› 2022, Vol. 31 ›› Issue (7): 172-184.DOI: 10.11686/cyxb2021425
• 研究论文 • 上一篇
董梦宇1(), 王金鑫1, 吴萌1, 周子瑶1, 程顺2, 李彦慧1()
收稿日期:
2021-11-23
修回日期:
2022-02-15
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
李彦慧
作者简介:
E-mail: yanhuili01@163.com基金资助:
Meng-yu DONG1(), Jin-xin WANG1, Meng WU1, Zi-yao ZHOU1, Shun CHENG2, Yan-hui LI1()
Received:
2021-11-23
Revised:
2022-02-15
Online:
2022-07-20
Published:
2022-06-01
Contact:
Yan-hui LI
摘要:
以欧亚香花芥和河北雾灵山、塞罕坝的2个野生型雾灵香花芥为试验材料,研究其功能叶片的形态、解剖结构、色素含量、叶绿素荧光及光合参数,借助相关性和冗余分析的方法探究两种香花芥属植物叶片结构与光合生理的关系。结果表明:1)2个野生型雾灵香花芥的叶片结构和光合生理存在种内差异,其中雾灵山植株叶片加厚、叶面积增大,栅栏组织加厚,色素含量丰富,净光合速率高,而塞罕坝植株叶片厚、气孔密度大,海绵组织加厚,导管、筛管直径加粗,PSⅡ反应中心活性参数高,蒸腾速率强;欧亚香花芥的叶表毛状体分布密集,栅海比高,色素含量丰富,净光合速率及水分利用效率高,均优于2个野生型雾灵香花芥。2)两种香花芥属植物叶片结构性状与光合生理参数间存在较强相关性,借助冗余分析筛选出栅海比、海绵组织厚度、表皮毛密度、组织结构疏松度、叶面积、导管直径、栅栏组织厚度和维管束直径等对光合生理有重要影响的叶片结构参数,其中栅海比达到显著水平(P<0.05),是两种香花芥属植物生态适应性及资源获取的主要驱动因素。总的来说,两种香花芥属植物均在引种地长势良好,具备一定的园林开发基础;同时栅海比可作为香花芥属植物筛选高光效优良种质的重要参考指标。
董梦宇, 王金鑫, 吴萌, 周子瑶, 程顺, 李彦慧. 两种香花芥属植物叶片结构及光合特性研究[J]. 草业学报, 2022, 31(7): 172-184.
Meng-yu DONG, Jin-xin WANG, Meng WU, Zi-yao ZHOU, Shun CHENG, Yan-hui LI. Leaf structure and photosynthetic characteristics of two species of Hesperis[J]. Acta Prataculturae Sinica, 2022, 31(7): 172-184.
图2 两种香花芥属植物叶形特征比较不同字母表示差异显著(P<0.05)。下同。Different letters meant significant differences at 0.05 level. The same below.
Fig.2 Comparison of leaf shape characteristics of two species of Hesperis
图3 两种香花芥属植物叶表皮气孔及表皮毛分布A~C分别为雾灵香花芥(雾)、雾灵香花芥(塞)和欧亚香花芥的叶表皮特征图(×100);D~F为气孔分布(×400);G~I分别为单毛(×400)、腺毛(×400)和分叉毛(×100)。A-C were the leaf epidermis characteristics of H. sibirica(Wu), H. sibirica(Sai) and H. matronalis (×100); D-F corresponded to the distribution of stomata (×400); G-I were simple trichomes (×400), glandular trichomes (×400) and forked trichomes (×100).
Fig.3 The distribution of leaf epidermal stomata and trichomes of two species of Hesperis
图5 两种香花芥属植物叶片解剖结构比较A、E和I分别为雾灵香花芥(雾)、雾灵香花芥(塞)和欧亚香花芥的主叶脉石蜡切片图(×50);B、F和J为维管束(×150);C、G和K为叶片石蜡切片解剖结构(×100);D、H和L为叶片徒手解剖结构(×100)。ue:上表皮;le:下表皮;vb:维管束;par:薄壁组织;sc:厚壁组织;xy:木质部;ph:韧皮部;ves:导管;st:筛管;pp:栅栏组织;sp:海绵组织。A, E and I were the paraffin sections of the main veins of H. sibirica (Wu), H. sibirica (Sai) and H. matronalis (×50); B, F and J were vascular bundles (×150); C, G and K were the leaf anatomical structures by paraffin section (×100), while D, H and L are leaf anatomical structures by free-hand section (×100). ue: Upper epidermis; le: Lower epidermis; vb: Vascular bundle; par: Parenchyma; sc: Sclerenchyma; xy: Xylem; ph: Phloem; ves: Vessel; st: Sieve tube; pp: Palisade parenchyma; sp: Sponge parenchyma.
Fig.5 Comparison of leaf anatomical structure of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶片厚度Leaf thickness (LT,μm) | 375.50±6.92a | 373.83±10.71a | 304.92±8.19b |
上表皮厚度Upper epidermal thickness (UET,μm) | 45.70±4.00a | 41.39±3.33a | 35.73±2.17a |
下表皮厚度Lower epidermal thickness (LET,μm) | 30.61±2.11a | 29.20±2.45a | 26.32±3.11a |
栅栏组织厚度Palisade parenchyma thickness (PPT,μm) | 104.00±2.90a | 87.29±3.65b | 98.37±4.40ab |
海绵组织厚度Spongy parenchyma thickness (SPT,μm) | 190.08±1.72b | 208.17±4.33a | 132.99±6.34c |
组织结构紧密度Cell tense ratio (CTR,%) | 27.73±0.94b | 23.37±0.89c | 32.30±1.41a |
组织结构疏松度Spongy ratio (SR,%) | 50.68±1.07b | 55.73±0.67a | 43.56±1.23c |
栅海比PPT/SPT | 0.55±0.01b | 0.42±0.02c | 0.75±0.05a |
维管束直径Vascular bundles diameter (VBD,μm) | 426.51±15.03a | 355.67±16.90b | 390.42±5.45ab |
导管直径Vessel diameter (VD,μm) | 12.20±1.21b | 15.90±0.78a | 8.23±0.41c |
筛管直径Sieve tube diameter (STD,μm) | 6.98±0.32b | 8.74±0.17a | 6.33±0.31b |
表1 两种香花芥属植物叶片解剖特征比较
Table 1 Comparison of leaf anatomical characteristics of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶片厚度Leaf thickness (LT,μm) | 375.50±6.92a | 373.83±10.71a | 304.92±8.19b |
上表皮厚度Upper epidermal thickness (UET,μm) | 45.70±4.00a | 41.39±3.33a | 35.73±2.17a |
下表皮厚度Lower epidermal thickness (LET,μm) | 30.61±2.11a | 29.20±2.45a | 26.32±3.11a |
栅栏组织厚度Palisade parenchyma thickness (PPT,μm) | 104.00±2.90a | 87.29±3.65b | 98.37±4.40ab |
海绵组织厚度Spongy parenchyma thickness (SPT,μm) | 190.08±1.72b | 208.17±4.33a | 132.99±6.34c |
组织结构紧密度Cell tense ratio (CTR,%) | 27.73±0.94b | 23.37±0.89c | 32.30±1.41a |
组织结构疏松度Spongy ratio (SR,%) | 50.68±1.07b | 55.73±0.67a | 43.56±1.23c |
栅海比PPT/SPT | 0.55±0.01b | 0.42±0.02c | 0.75±0.05a |
维管束直径Vascular bundles diameter (VBD,μm) | 426.51±15.03a | 355.67±16.90b | 390.42±5.45ab |
导管直径Vessel diameter (VD,μm) | 12.20±1.21b | 15.90±0.78a | 8.23±0.41c |
筛管直径Sieve tube diameter (STD,μm) | 6.98±0.32b | 8.74±0.17a | 6.33±0.31b |
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶绿素a Chlorophyll a (Chl a, mg·g-1) | 0.81±0.02a | 0.70±0.01b | 0.88±0.04a |
叶绿素b Chlorophyll b (Chl b, mg·g-1) | 0.32±0.03a | 0.24±0.01b | 0.32±0.02a |
类胡萝卜素Carotenoid (Car, mg·g-1) | 0.30±0.00a | 0.27±0.01a | 0.29±0.01a |
叶绿素总量Chl a+b (mg·g-1) | 1.12±0.03a | 0.94±0.02b | 1.19±0.05a |
叶绿素a/b Chl a/b | 2.62±0.25a | 2.92±0.12a | 2.76±0.05a |
花青苷Anthocyanin (Ant, mg·g-1) | 0.27±0.02a | 0.17±0.01b | 0.23±0.01a |
表2 两种香花芥属植物叶片色素含量比较
Table 2 Comparison of leaf pigment content of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
叶绿素a Chlorophyll a (Chl a, mg·g-1) | 0.81±0.02a | 0.70±0.01b | 0.88±0.04a |
叶绿素b Chlorophyll b (Chl b, mg·g-1) | 0.32±0.03a | 0.24±0.01b | 0.32±0.02a |
类胡萝卜素Carotenoid (Car, mg·g-1) | 0.30±0.00a | 0.27±0.01a | 0.29±0.01a |
叶绿素总量Chl a+b (mg·g-1) | 1.12±0.03a | 0.94±0.02b | 1.19±0.05a |
叶绿素a/b Chl a/b | 2.62±0.25a | 2.92±0.12a | 2.76±0.05a |
花青苷Anthocyanin (Ant, mg·g-1) | 0.27±0.02a | 0.17±0.01b | 0.23±0.01a |
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
初始荧光Fo | 252.25±13.49b | 261.25±2.29b | 325.75±15.14a |
最大荧光 Fm | 1268.50±45.87b | 1325.00±25.47b | 1782.00±82.60a |
可变荧光 Fv | 1016.50±37.75b | 1063.25±27.57b | 1456.25±67.93a |
PSⅡ反应中心最大光化学效率 Fv/Fm | 0.80±0.01a | 0.80±0.00a | 0.82±0.00a |
PSⅡ量子效率 Fv/Fo | 4.05±0.19a | 4.07±0.14a | 4.47±0.06a |
PSⅡ电子传递情况 Fm/Fo | 5.05±0.19a | 5.07±0.14a | 5.47±0.06a |
PSⅡ单位反应中心吸收的光能 ABS/RC | 1.57±0.09b | 1.84±0.07a | 1.48±0.07b |
PSⅡ单位反应中心捕获的用于还原初级醌受体的能量 TRo/RC | 1.26±0.06b | 1.48±0.07a | 1.21±0.05b |
PSⅡ单位反应中心捕获的用于电子传递的能量 ETo/RC | 0.88±0.00b | 0.98±0.04a | 0.77±0.02c |
PSⅡ单位反应中心热耗散的能量 DIo/RC | 0.31±0.03ab | 0.36±0.01a | 0.27±0.01b |
表3 两种香花芥属植物叶绿素荧光参数
Table 3 Chlorophyll fluorescence parameters of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
初始荧光Fo | 252.25±13.49b | 261.25±2.29b | 325.75±15.14a |
最大荧光 Fm | 1268.50±45.87b | 1325.00±25.47b | 1782.00±82.60a |
可变荧光 Fv | 1016.50±37.75b | 1063.25±27.57b | 1456.25±67.93a |
PSⅡ反应中心最大光化学效率 Fv/Fm | 0.80±0.01a | 0.80±0.00a | 0.82±0.00a |
PSⅡ量子效率 Fv/Fo | 4.05±0.19a | 4.07±0.14a | 4.47±0.06a |
PSⅡ电子传递情况 Fm/Fo | 5.05±0.19a | 5.07±0.14a | 5.47±0.06a |
PSⅡ单位反应中心吸收的光能 ABS/RC | 1.57±0.09b | 1.84±0.07a | 1.48±0.07b |
PSⅡ单位反应中心捕获的用于还原初级醌受体的能量 TRo/RC | 1.26±0.06b | 1.48±0.07a | 1.21±0.05b |
PSⅡ单位反应中心捕获的用于电子传递的能量 ETo/RC | 0.88±0.00b | 0.98±0.04a | 0.77±0.02c |
PSⅡ单位反应中心热耗散的能量 DIo/RC | 0.31±0.03ab | 0.36±0.01a | 0.27±0.01b |
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
净光合速率 Net photosynthetic rate (Pn,μmol·m-2·s-1) | 30.43±0.77ab | 28.38±0.63b | 34.75±2.63a |
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | 7.65±0.62a | 8.15±0.27a | 5.88±0.34b |
水蒸气压亏损 Vapor pressure deficit (VPD,mmol·m-2·s-1) | 2.37±0.18a | 2.56±0.08a | 1.43±0.15b |
气孔导度 Stomatal conductance (Gs,mmol·m-2·s-1) | 383.25±33.91b | 362.00±19.86b | 479.75±17.67a |
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | 389.00±6.89a | 390.00±3.70a | 458.25±43.10a |
水分利用效率 Water use efficiency (WUE,μmol·mmol-1) | 4.04±0.26b | 3.49±0.07b | 5.97±0.58a |
表4 两种香花芥属植物光合参数
Table 4 Photosynthetic parameters of two species of Hesperis
指标 Indices | 雾灵香花芥(雾) H. sibirica (Wu) | 雾灵香花芥(塞) H. sibirica (Sai) | 欧亚香花芥 H. matronalis |
---|---|---|---|
净光合速率 Net photosynthetic rate (Pn,μmol·m-2·s-1) | 30.43±0.77ab | 28.38±0.63b | 34.75±2.63a |
蒸腾速率 Transpiration rate (Tr,mmol·m-2·s-1) | 7.65±0.62a | 8.15±0.27a | 5.88±0.34b |
水蒸气压亏损 Vapor pressure deficit (VPD,mmol·m-2·s-1) | 2.37±0.18a | 2.56±0.08a | 1.43±0.15b |
气孔导度 Stomatal conductance (Gs,mmol·m-2·s-1) | 383.25±33.91b | 362.00±19.86b | 479.75±17.67a |
胞间CO2浓度 Intercellular CO2 concentration (Ci,μmol·mol-1) | 389.00±6.89a | 390.00±3.70a | 458.25±43.10a |
水分利用效率 Water use efficiency (WUE,μmol·mmol-1) | 4.04±0.26b | 3.49±0.07b | 5.97±0.58a |
图6 两种香花芥属植物叶片结构与光合生理的相关性分析热图*P<0.05;**P<0.01;***P<0.001.LA:叶面积;LP:叶周长;LL/LW:叶纵横比;SD:气孔密度;SL/SW:气孔长宽比;ETD:表皮毛密度;LT:叶片厚度;UET:上表皮厚度;LET:下表皮厚度;PPT:栅栏组织厚度;SPT:海绵组织厚度;CTR:组织结构紧密度;SR:组织结构疏松度;PPT/SPT:栅海比;VBD:维管束直径;VD:导管直径;STD:筛管直径;Chl a:叶绿素a;Chl b:叶绿素b;Car:类胡萝卜素;Chl a+b:总叶绿素;Chl a/b:叶绿素a/b;Ant:花青苷;Fo:初始荧光;Fm:最大荧光;Fv:可变荧光;Fv/Fm:PSⅡ反应中心最大光化学效率;Fv/Fo:PSⅡ量子效率;Fm/Fo:PSⅡ电子传递情况;ABS/RC:PSⅡ单位反应中心吸收的光能;TRo/RC:PSⅡ单位反应中心捕获的用于还原初级醌受体的能量;ETo/RC:PSⅡ单位反应中心捕获的用于电子传递的能量;DIo/RC:PSⅡ单位反应中心热耗散的能量;Pn:净光合速率;Tr:蒸腾速率;VPD:水蒸气压亏损;Ci:胞间CO2浓度;Gs:气孔导度;WUE:水分利用效率。下同。LA: Leaf area; LP: Leaf perimeter; LL/LW: Leaf length/leaf width; SD: Stomata density; SL/SW: Stomata length/stomata width; ETD: Epidermal trichome density; LT: Leaf thickness; UET: Upper epidermal thickness; LET: Lower epidermal thickness; PPT: Palisade parenchyma thickness; SPT: Spongy parenchyma thickness; CTR: Cell tense ratio; SR: Spongy ratio; PPT/SPT:The ratio of palisade tissue thickness to spongy tissue thickness; VBD: Vascular bundles diameter; VD: Vessel diameter; STD: Sieve tube diameter; Chl a: Chlorophyll a; Chl b: Chlorophyll b; Car: Carotenoid; Chl a+b: Total chlorophyll; Chl a/b: Chlorophyll a/b; Ant: Anthocyanidin; Fo: Initial fluorescence; Fm: Maximum fluorescence; Fv: Variable fluorescence; Fv/Fm: The maximal PSⅡphotochemical efficiency; Fv/Fo: Potential activity; Fm/Fo: Electron transport activity; ABS/RC: Light energy absorbed by PSⅡ unit reaction center; TRo/RC: PSⅡ unit reaction center used to reduce the primary quinone acceptor; ETo/RC: PSⅡ unit reaction center used for electron transfer; DIo/RC: Heat dissipation energy by PSⅡ unit reaction center; Pn: Net photosynthetic rate; Tr: Transpiration rate; VPD: Vapor pressure deficit; Ci: Intercellular CO2 concentration; Gs: Stomatal conductance; WUE: Water use efficiency. The same below.
Fig.6 The heat map of correlation analysis between leaf structure and photosynthetic physiology of two species of Hesperis
1 | Zhang L M. On the significance and plant allocation principles in the landscape construction in the urban ecological system. Value Engineering, 2010, 29(4): 157. |
张黎明. 论城市生态系统中园林建设的重要性及植物配置原则. 价值工程, 2010, 29(4): 157. | |
2 | Zhou Y Q, Wen Z Y, Fan W L, et al. Comparative study of Chinese and American flower industry. Northern Horticulture, 2019(4): 154-161. |
周雨琦, 温振英, 樊晚林, 等. 中美花卉产业比较研究. 北方园艺, 2019(4): 154-161. | |
3 | He Y Q, Liu J X, Wei K, et al. Evaluation on the development and application of Pingtan wild herbaceous flower based on Grey Relational Degree. Pratacultural Science, 2020, 37(8): 1497-1507. |
何雅琴, 刘健行, 魏凯, 等. 基于灰色关联度的平潭野生草本花卉开发应用评价. 草业科学, 2020, 37(8): 1497-1507. | |
4 | Zhang Y H, Wang Y. An analysis of feasibility of flower field development in China. World Forestry Research, 2018, 31(3): 52-57. |
张艳慧, 王雁. 花田在中国发展的可行性分析. 世界林业研究, 2018, 31(3): 52-57. | |
5 | Zhao X, Jia R D, Zhu J, et al. The achievements of conservation and utilization for wild important flower resources in China. Journal of Plant Genetic Resources, 2020, 21(6): 1494-1502. |
赵鑫, 贾瑞冬, 朱俊, 等. 我国重要花卉野生资源保护利用成就与展望. 植物遗传资源学报, 2020, 21(6): 1494-1502. | |
6 | Zhang L J, Dai S L. Study and exploration on some flowers and its wild relatives in China. Journal of Beijing Forestry University, 2007(6): 190-195. |
张莉俊, 戴思兰. 我国重要花卉及其野生近缘种的研究开发. 北京林业大学学报, 2007(6): 190-195. | |
7 | Bai J Y, Liu D Y. Effects of salt stress on seed germination of Hesperis matronalis. Journal of Hebei Agricultural Sciences, 2019, 23(2): 53-56, 59. |
白靖怡, 刘冬云. 盐胁迫对蓝香芥种子萌发的影响. 河北农业科学, 2019, 23(2): 53-56, 59. | |
8 | Wu Z Y. Flora of China. Beijing: Beijing Science Press, 2001. |
吴征镒. 中国植物志(英文版). 北京: 科学出版社, 2001. | |
9 | Jiang H B, Ding Q, Jia G X, et al. The resources of herbaceous wild flowers in Longtou Mountain of Hebei Province and their utilization in landscape gardening. Scientia Silvae Sinicae, 2004, 40(6): 102-109. |
姜洪波, 丁琼, 贾桂霞, 等. 河北省龙头山区野生草本花卉植物资源及园林应用. 林业科学, 2004, 40(6): 102-109. | |
10 | Tang W H, Dou Q Q, Pan P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(3): 81-88. |
汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究. 南京林业大学学报(自然科学版), 2020, 44(3): 81-88. | |
11 | Li F L, Bao W K. Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 2005, 22(Supple1): 118-127. |
李芳兰, 包维楷. 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 2005, 22(增刊1): 118-127. | |
12 | Du Y X, Ji X, Zhang J, et al. Research progress on the impacts of low light intensity on rice growth and development. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1307-1317. |
杜彦修, 季新, 张静, 等. 弱光对水稻生长发育影响研究进展. 中国生态农业学报, 2013, 21(11): 1307-1317. | |
13 | Fan B L, Ma Q L, Guo S J, et al. Ecophysiological responses of mother and daughter ramets in response to wind erosion and sand burial in clonal shrub plant Calligonum mongolicun. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(12): 2491-2497. |
樊宝丽, 马全林, 郭树江, 等. 克隆植物沙拐枣的母株和分株对风蚀沙埋的生理生态响应. 西北植物学报, 2016, 36(12): 2491-2497. | |
14 | Li J X, Tian Q. Leaf morphology and photosynthetic physiological characteristics of six garden plants in Lanzhou. Journal of Northwest A&F University (Natural Science Edition), 2022(1): 1-9. |
李娟霞, 田青. 兰州市6种园林植物叶片形态和光合生理特征. 西北农林科技大学学报(自然科学版), 2022(1): 1-9. | |
15 | Li H S. Principles and techniques of plant physiology and biochemistry experiment. Beijing: Higher Education Press, 2001. |
李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2001. | |
16 | Xu J R, Zhang M W, Liu X H, et al. Correlation between antioxidation, and content of total phenolics and anthocyanin in black soybean accessions. Scientia Agricultura Sinica, 2006(8): 1545-1552. |
徐金瑞, 张名位, 刘兴华, 等. 黑大豆种质抗氧化能力及其与总酚和花色苷含量的关系. 中国农业科学, 2006(8): 1545-1552. | |
17 | Wei C X, Xie P S, Zhou W D, et al. Comparison of preparing slice techniques of convexo-concave leaf epiderms. Journal of Biology, 2008(2): 63-66. |
韦存虚, 谢佩松, 周卫东, 等. 凹凸不平的植物叶片表皮制片方法的观察比较. 生物学杂志, 2008(2): 63-66. | |
18 | Li Q, He X, He Y M, et al. Comparative study of leaf characters in 6 species of Leguminosae. Journal of Arid Land Resources and Environment, 2017, 31(11): 148-153. |
李琪, 贺晓, 贺一鸣, 等. 豆科3属6种植物叶片特征比较研究. 干旱区资源与环境, 2017, 31(11): 148-153. | |
19 | Zhang S M, Liu H Y, Cheng J J, et al. Free-hand section techniques for clear observation of cell structures of millet (Setaria italica) and rice (Oryza sativa) leaves. Genomics and Applied Biology, 2015, 34(7): 1527-1530. |
张书敏, 刘红云, 程金金, 等. 快速徒手切片法观察谷子和水稻叶片显微结构. 基因组学与应用生物学, 2015, 34(7): 1527-1530. | |
20 | García-Cervigón A I, García-López M A, Pistón N, et al. Coordination between xylem anatomy, plant architecture and leaf functional traits in response to abiotic and biotic drivers in a nurse cushion plant. Annals of Botany, 2021, 127(7): 919-929. |
21 | Li Y Q, Wang Z H. Leaf morphological traits: Ecological function, geographic distribution and drivers. Chinese Journal of Plant Ecology, 2021, 45(10): 1154-1172. |
李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因. 植物生态学报, 2021, 45(10): 1154-1172. | |
22 | Liu X M, Tang N, Chen Z X, et al. Progress in plant trichome development research. Acta Horticulturae Sinica, 2021, 48(4): 705-718. |
刘晓梦, 唐宁, 陈泽雄, 等. 植物表皮毛发育研究进展. 园艺学报, 2021, 48(4): 705-718. | |
23 | Kim H J, Han J H, Kim S, et al. Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 2010, 122(6): 1051-1058. |
24 | Du B, Zhu Y, Kang H, et al. Spatial variations in stomatal traits and their coordination with leaf traits in Quercus variabilis across Eastern Asia. Science of the Total Environment, 2021, 789: 147757. |
25 | Gong R, Gao Q. Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 2015, 39(3): 300-308. |
龚容, 高琼. 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 2015, 39(3): 300-308. | |
26 | Tian L L, Wei J Q, Wang Z H, et al. The effect of shading on photosynthesis and fluorescence parameters of Borago officinalis. Journal of Hebei Agricultural University, 2019, 42(3): 81-87. |
田琳琳, 魏佳祺, 王中华, 等. 遮阴对玻璃苣光合特性的影响. 河北农业大学学报, 2019, 42(3): 81-87. | |
27 | Sun X L, Xu Y F, Ma L Y, et al. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chinese Journal of Plant Ecology, 2010, 34(8): 989-999. |
孙小玲, 许岳飞, 马鲁沂, 等. 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 2010, 34(8): 989-999. | |
28 | Chen L Y, Xie D J, Rong J D, et al. Effects of photosynthetic pigment content on photosynthetic characteristics of different leaf color phenotypes of Sinobambusa tootsik f. luteoloalbostriata. Scientia Silvae Sinicae, 2019, 55(12): 21-31. |
陈凌艳, 谢德金, 荣俊冬, 等. 光合色素含量差异对花叶唐竹不同叶色表型光合特性的影响. 林业科学, 2019, 55(12): 21-31. | |
29 | Sun G L, Xu M, Li J, et al. Study on characteristics of net photosynthetic rate of two kinds of tree shape and impact factors in Korla fragrant pear. Acta Ecologica Sinica, 2013, 33(18): 5565-5573. |
孙桂丽, 徐敏, 李疆, 等. 香梨两种树形净光合速率特征及影响因素. 生态学报, 2013, 33(18): 5565-5573. | |
30 | Sharma D K, Andersen S B, Ottosen C O, et al. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiologia Plantarum, 2015, 153(2): 284. |
31 | Feng F, Fan P P, Liu C, et al. Intergenerational response of chlorophyll fluorescence characteristics of rice to elevated CO2 concentration. Ecology and Environmental Sciences, 2019, 28(3): 463-471. |
冯芳, 范佩佩, 刘超, 等. 水稻叶绿素荧光特性对CO2浓度升高的代际响应研究. 生态环境学报, 2019, 28(3): 463-471. | |
32 | Zhao J W, Li Q Y, Lu B, et al. Comparison of photosynthetic parameters between Pyrus betulaefolia and Pyrus calleryana under NaCl stress. Northern Horticulture, 2019(22): 97-104. |
赵佳伟, 李清亚, 路斌, 等. NaCl胁迫下北美豆梨和杜梨的光合荧光参数比较. 北方园艺, 2019(22): 97-104. | |
33 | Zhan L Y, Wang J, Lin Y Z. Effect of light on anthocyanin synthesis in plant. Northern Horticulture, 2016(12): 197-201. |
占丽英, 王晶, 林义章. 光影响植物花青苷合成研究. 北方园艺, 2016(12): 197-201. | |
34 | Li X H, Yan H J, Wei T Z, et al. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 2019, 43(10): 889-898. |
李鑫豪, 闫慧娟, 卫腾宙, 等. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应. 植物生态学报, 2019, 43(10): 889-898. | |
35 | Jia Z H, Yin X, Luo W, et al. Relating landscape characteristics to water quality dynamics in the ditches and ponds of the plain river network area in the lower reaches of the Yangtze River basin, China. Journal of Agricultural Resources and Environment, 2021, 38(4): 665-676. |
贾忠华, 尹玺, 罗纨, 等. 平原河网区排水沟塘水质动态与景观特征的关系. 农业资源与环境学报, 2021, 38(4): 665-676. | |
36 | Liu F T, Wang X Q, Chi Q H, et al. Spatial variations in soil organic carbon, nitrogen, phosphorus contents and controlling factors across the “Three Rivers” regions of southwest China. Science of the Total Environment, 2021, 794: 148795. |
37 | Wang X Y, Zhang J, Meng H S, et al. Effects of different concentrations of nano cerium and ionic cerium on physiological properties of bok choy (Brassica chinensis L.). Journal of Shanxi Agricultural University (Natural Science Edition), 2021, 41(3): 69-78. |
王向英, 张杰, 孟会生, 等. 不同浓度纳米铈和离子铈对小油菜生理指标的影响. 山西农业大学学报(自然科学版), 2021, 41(3): 69-78. |
[1] | 白婕, 臧真凤, 刘丛, 昝看卓, 龙明秀, 王可珍, 屈洋, 何树斌. 紫花苜蓿叶片和根系膜脂过氧化及C、N特征对水分和N添加的响应[J]. 草业学报, 2022, 31(2): 213-220. |
[2] | 王诗雅, 郑殿峰, 冯乃杰, 梁喜龙, 项洪涛, 冯胜杰, 王新欣, 左官强. 鼓粒期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J]. 草业学报, 2021, 30(7): 157-166. |
[3] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[4] | 何海锋, 闫承宏, 吴娜, 刘吉利, 贾瑜琀. 不同施氮水平对柳枝稷光合特性及抗旱性的影响[J]. 草业学报, 2021, 30(1): 107-115. |
[5] | 万芳, 蒙仲举, 党晓宏, 王瑞东, 张慧敏. 封育措施下荒漠草原针茅植物-土壤C、N、P化学计量特征[J]. 草业学报, 2020, 29(9): 49-55. |
[6] | 单立文, 张强, 朱瑞芬, 孔晓蕾, 陈积山. 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响[J]. 草业学报, 2020, 29(8): 46-57. |
[7] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[8] | 康彩睿, 谢军红, 李玲玲, 王嘉男, 郭喜军, 彭正凯, 王进斌, Setor kwami Fudjoe, 王林林. 种植密度与施氮量对陇中旱农区玉米产量及光合特性的影响[J]. 草业学报, 2020, 29(5): 141-149. |
[9] | 赵小强, 陆晏天, 白明兴, 徐明霞, 彭云玲, 丁永福, 庄泽龙, 陈奋奇, 张大志. 不同株型玉米基因型对干旱胁迫的响应分析[J]. 草业学报, 2020, 29(2): 149-162. |
[10] | 许爱云, 曹兵, 谢云. 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价[J]. 草业学报, 2020, 29(10): 22-34. |
[11] | 王贞升, 李彦雪, 于成龙, 狄小琳, 陈鹏, 田静瑶, 王竞红. 不同模拟降水量下草地早熟禾根系形态与解剖结构的动态变化[J]. 草业学报, 2020, 29(10): 70-80. |
[12] | 张盼盼, 杨裕然, 薛佳欣, 王涛, 刘涵, 刘翠英, 冯佰利, 张雄. 烯效唑对盐胁迫下糜子幼苗形态和生理特性的调控效应[J]. 草业学报, 2020, 29(10): 81-90. |
[13] | 周敏, 杜峰, 张赟赟, 潘天辉. 黄土高原撂荒地植物群落共存种光合特性对土壤水分变化的响应[J]. 草业学报, 2020, 29(1): 50-62. |
[14] | 刘领, 李冬, 马宜林, 王丽君, 赵世民, 周俊学, 申洪涛, 王艳芳. 外源褪黑素对干旱胁迫下烤烟幼苗生长的缓解效应与生理机制研究[J]. 草业学报, 2019, 28(8): 95-105. |
[15] | 陈斌, 李洪瑶, 刘筱玮, 夏斌, 孙绍文, 孙颖, 何淼. 不同光照强度对新娘草叶片形态建成及超微结构的影响[J]. 草业学报, 2019, 28(7): 175-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||