草业学报 ›› 2021, Vol. 30 ›› Issue (6): 73-81.DOI: 10.11686/cyxb2020506
臧真凤(), 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌()
收稿日期:
2020-11-16
修回日期:
2021-01-18
出版日期:
2021-05-21
发布日期:
2021-05-21
通讯作者:
何树斌
作者简介:
Corresponding author. E-mail: heshubin@nwsuaf.edu.cn基金资助:
Zhen-feng ZANG(), Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE()
Received:
2020-11-16
Revised:
2021-01-18
Online:
2021-05-21
Published:
2021-05-21
Contact:
Shu-bin HE
摘要:
为研究紫花苜蓿在叶片和根系水平上响应干旱胁迫的形态和生理的品种特异性规律,在温室内分析了干旱胁迫下WL363HQ和巨能7紫花苜蓿株高、分枝数、生物量及叶片和根系中丙二醛(MDA)、脯氨酸、抗氧化酶类物质、C、N含量、C/N、稳定性C同位素(δ13C)和稳定性N同位素(δ15N)。结果表明:干旱胁迫显著降低了供试品种地上部分和根系的干重及分枝数(P<0.05)。干旱胁迫显著降低了巨能7的株高(P<0.05),但增加了巨能7的根冠比,而WL363HQ的结果与之相反,这说明干旱胁迫下供试品种的株高和根冠比具有品种特异性的规律。干旱胁迫增加了WL363HQ和巨能7叶片和根系中MDA和脯氨酸的含量及抗氧化酶物质的活性,且在器官水平也具有品种特异性规律。干旱胁迫下巨能7叶片的MDA含量显著增加(P<0.05),而在WL363HQ根系中的MDA含量也显著增加(P<0.05)。干旱胁迫下WL363HQ叶片脯氨酸含量、POD和SOD活性,及根系SOD的活性均显著增加(P<0.05),而巨能7仅叶片SOD活性,根系脯氨酸含量、POD活性显著升高(P<0.05)。尽管干旱胁迫对供试品种叶片和根系C、N含量无显著影响(P>0.05),但干旱胁迫显著提高了WL363HQ和巨能7紫花苜蓿根系的δ13C(P<0.05),且WL363HQ叶片的δ15N均显著高于巨能7(P<0.05)。此外,干旱胁迫均显著提高了巨能7叶片和根系的C/N(P<0.05)。干旱胁迫下供试品种C、N代谢参数并没有在叶片和根系中表现出较为明显的品种特异性规律,深层次的机制还有待进一步研究。本研究结果将为进一步掌握紫花苜蓿叶片和根系协同抗旱机制及抗旱丰产紫花苜蓿新品种的选育提供理论依据。
臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81.
Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress[J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81.
图1 干旱胁迫下WL363HQ和巨能7的株高和分枝数数据为平均值±标准误。不同小写字母表示在同一水分处理下不同品种之间差异显著(P<0.05),*表示同一品种在不同水分处理间差异显著(P<0.05),下同。Values are mean±SE. Different lowercase letters indicate that significant differences between different varieties under the same water treatment, * indicate that significant differences between the same variety under different water treatment (P<0.05), the same below.
Fig. 1 Plant height and branch number of WL363HQ and Magnum Ⅶ under drought stress
项目 Item | 处理 Treatments | 地上部分鲜重 Aboveground fresh weight (g·plant-1) | 根系鲜重 Root fresh weight (g·plant-1) | 地上部分干重 Aboveground dry weight (g·plant-1) | 根系干重 Root dry weight (g·plant-1) | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|
WL363HQ | 对照 Control | 9.03±1.07a | 7.55±1.01a* | 2.02±0.28a | 1.45±0.07a* | 0.86±0.10a |
干旱 Drought | 6.00±1.15a | 3.92±0.55a | 1.41±0.27a | 0.92±0.16a | 0.69±0.07a | |
巨能7 Magnum Ⅶ | 对照 Control | 7.02±0.14a* | 5.28±1.60a | 1.43±0.11a* | 0.98±0.20a | 0.76±0.13b |
干旱 Drought | 3.65±0.67a | 4.32±1.49a | 0.87±0.18a | 0.94±0.17a | 1.19±0.02a* |
表1 干旱胁迫下WL363HQ和巨能7的生物量分配规律
Table 1 Biomass allocation of WL363HQ and Magnum Ⅶ under drought stress
项目 Item | 处理 Treatments | 地上部分鲜重 Aboveground fresh weight (g·plant-1) | 根系鲜重 Root fresh weight (g·plant-1) | 地上部分干重 Aboveground dry weight (g·plant-1) | 根系干重 Root dry weight (g·plant-1) | 根冠比 Root-shoot ratio |
---|---|---|---|---|---|---|
WL363HQ | 对照 Control | 9.03±1.07a | 7.55±1.01a* | 2.02±0.28a | 1.45±0.07a* | 0.86±0.10a |
干旱 Drought | 6.00±1.15a | 3.92±0.55a | 1.41±0.27a | 0.92±0.16a | 0.69±0.07a | |
巨能7 Magnum Ⅶ | 对照 Control | 7.02±0.14a* | 5.28±1.60a | 1.43±0.11a* | 0.98±0.20a | 0.76±0.13b |
干旱 Drought | 3.65±0.67a | 4.32±1.49a | 0.87±0.18a | 0.94±0.17a | 1.19±0.02a* |
1 | Hong F Z. Alfalfa science. Beijing: China Agriculture Press, 2009. |
洪绂曾. 苜蓿科学. 北京: 中国农业出版社, 2009. | |
2 | Li P, Sun J, Xing J J. The origin and spread of alfalfa. Inner Mongolia Prataculture, 2012, 24(1): 5-8. |
李平, 孙杰, 邢建军. 论苜蓿的起源与传播. 内蒙古草业, 2012, 24(1): 5-8. | |
3 | Sun Z H, Zhao J J, Xu H T, et al. Analysis of the situation of China’s alfalfa industry in 2019. China Dairy Cattle, 2019(10): 58-60. |
孙志华, 赵俊金, 许海涛, 等. 2019年我国苜蓿产业形势分析. 中国奶牛, 2019(10): 58-60. | |
4 | Huang Z, Liu Y, Cui Z, et al. Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crops Research, 2018, 221: 1-6. |
5 | Li J, Lei X, Wang X L, et al. Effects of drought stress on the physiological characteristics of new lines of Festuca arundinacea induced by spaceflight and their comprehensive evaluation. Acta Prataculturae Sinica, 2017, 26(10): 87-98. |
李娟, 雷霞, 王小利,等. 干旱胁迫对高羊茅航天诱变新品系生理特性的影响及综合评价. 草业学报, 2017, 26(10): 87-98. | |
6 | Fan L X, Liu G B, Xue J, et al. Synergistic effects of doubled CO2 concentration and drought stress on the photosynthetic characteristics of Medicago sativa. Acta Agrestia Sinica, 2014, 22(1): 85-93. |
樊良新, 刘国彬, 薛萐, 等. CO2浓度倍增及干旱胁迫对紫花苜蓿光合生理特性的协同影响. 草地学报, 2014, 22(1): 85-93. | |
7 | Zhang C, Shi S, Liu Z, et al. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. Journal of Plant Physiology, 2019, 232: 226-240. |
8 | Qin F F, Shen Y X, Li L H, et al. Effect of drought stress on the photosynthetic characteristics and water use efficiency of three dominant forage grasses in Sinkiang. Acta Prataculturae Sinica, 2016, 25(10): 86-94. |
覃凤飞, 沈益新, 李兰海,等. 干旱胁迫对新疆三个优势牧草种的光合特性与水分利用效率的影响. 草业学报, 2016, 25(10): 86-94. | |
9 | Aranjuelo I, Tcherkez G, Molero G, et al. Concerted changes in N and C primary metabolism in alfalfa (Medicago sativa) under water restriction. Journal of Experimental Botany, 2013, 64(4): 1-17. |
10 | Soba D, Zhou B W, Arrese-Igor C, et al. Physiological, hormonal and metabolic responses of two alfalfa cultivars with contrasting responses to drought. International Journal of Molecular Sciences, 2019, 20(20): 5099. |
11 | Zhang C M. Physiological and molecular mechanisms of response to drought stress in different drought-resistant alfalfa (Medicago sativa L.) varieties. Lanzhou: Gansu Agricultural University, 2019. |
张翠梅. 不同抗旱性紫花苜蓿响应干旱的生理及分子机制研究. 兰州: 甘肃农业大学, 2019. | |
12 | Di Palo F, Fornara D. Soil fertility and the carbon: Nutrient stoichiometry of herbaceous plant species. Ecosphere, 2015, 6(12): 1-15. |
13 | Maghsoodi M, Razmjoo J. Identify physiological markers for drought tolerance in alfalfa. Agronomy Journal, 2015, 107(1): 149-157. |
14 | Quan W, Liu X, Wang H, et al. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Frontiers in Plant Science, 2015, 6: 1256. |
15 | Kang Y, Han Y H, Torres-Jerez I, et al. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant Journal, 2011, 68(5): 871-889. |
16 | Gupta A, Rico-Medina A, Cano-Delgado A I. The physiology of plant responses to drought. Science, 2020, 368(6488): 266-269. |
17 | Voisin A S, Salon C, Munier-Jolain N G, et al. Effect of mineral nitrogen on nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.). Plant and Soil, 2002, 242(2): 251-262. |
18 | Draper H H, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology, 1990, 186: 421-431. |
19 | Zou Q. Plant physiology experiment guidance. Beijing: China Agriculture Press, 2007. |
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007. | |
20 | Ries G S K. Superoxide dismutases I. occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314. |
21 | Chance B, Maehly A C. The assay of catalases and peroxidases. Methods in Enzymology, 1955, 2(55): 764-775. |
22 | Erice G, Louahlia S, Irigoyen J J, et al. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Journal of Plant Physiology, 2010, 167(2): 114-120. |
23 | Gao L M, Su J, Tian Q, et al. Contrasting strategies of nitrogen absorption and utilization in alfalfa plants under different water stress. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 1515-1523. |
24 | Wu R X, Li Y, You Y L, et al. Study on drought resistance identification and evaluation methods of alfalfa during whole growth period. Acta Agrestia Sinica, 2020, 28(5): 1444-1453. |
武瑞鑫, 李源, 游永亮, 等. 紫花苜蓿全生育期抗旱性鉴定评价方法探讨. 草地学报, 2020, 28(5): 1444-1453. | |
25 | Li S, Miao L H, Nie Z N, et al. Comparison of production performanceyield of 8 alfalfa cultivars under drought stress. Grassland and Turf, 2020, 40(3): 15-22. |
李硕, 苗丽宏, 聂中南, 等. 干旱胁迫对不同紫花苜蓿品种生产性能的影响. 草原与草坪, 2020, 40(3): 15-22. | |
26 | Huo H L, Wang Q, Shi S L, et al. Effect of irrigation and phosphor supply levels on the number of shoot, hay yield and water use efficiency of alfalfa. Chinese Journal of Soil Science, 2013, 44(4): 905-911. |
霍海丽, 王琦, 师尚礼, 等. 灌溉和施磷对紫花苜蓿分枝数、干草产量及水分利用效率的影响. 土壤通报, 2013, 44(4): 905-911. | |
27 | Wang J H, Zhang X M, Chen A, et al. Response of physiological characteristics and anatomical structure of roots in Amorpha fruticosa seedlings exposed to simulated drought with PEG-6000. Acta Ecologica Sinica, 2018, 38(2): 511-517. |
王竞红, 张秀梅, 陈艾, 等. 紫穗槐幼苗根系生理特性和解剖结构对PEG-6000模拟干旱的响应. 生态学报, 2018, 38(2): 511-517. | |
28 | Song J X, Lv J, Zong X F, et al. Effects of brassinolide and N, P, K fertiliser on growth of Leymus chinensis under drought stress. Acta Prataculturae Sinica, 2018, 27(11): 171-178. |
宋吉轩, 吕俊, 宗学凤,等. 干旱胁迫下BR与N、P、K配合对羊草生长及抗旱性的影响. 草业学报, 2018, 27(11): 171-178. | |
29 | Walter A, Silk W K, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth. Annual Review of Plant Biology, 2009, 60(1): 279-304. |
30 | Avice J C, Le Dily F, Goulas E, et al. Vegetative storage proteins in overwintering storage organs of forage legumes: Roles and regulation. Canadian Journal of Botany-Revue Canadienne De Botanique, 2003, 81(12): 1198-1212. |
31 | Chamekh Z, Karmous C, Ayadi S, et al. Comparative performance of δ13C, ion accumulation and agronomic parameters for phenotyping durum wheat genotypes under various irrigation water salinities. Annals of Applied Biology, 2017, 170(2): 229-239. |
32 | Ronquim C C, Prado C H B D, De Paula N F. Growth and photosynthetic capacity in two woody species of cerrado vegetation under different radiation availability. Brazilian Archives of Biology and Technology, 2003, 46(2): 243-252. |
33 | Sierra J, Daudin D, Domenach A M, et al. Nitrogen transfer from a legume tree to the associated grass estimated by the isotopic signature of tree root exudates: A comparison of the 15N leaf feeding and natural 15N abundance methods. European Journal of Agronomy, 2007, 27(2/3/4): 178-186. |
34 | Saura-Mas S, Lloret F. Foliar stable carbon and nitrogen isotopes in woody Mediterranean species with different life form and post-fire regeneration. Plant Biology, 2010, 12(1): 125-133. |
35 | Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 2006, 11(12): 610-617. |
36 | Román M, Rendal S, Fernández E, et al. Seasonal variability of the carbon and nitrogen isotopic signature in a Zostera noltei meadow at the NW Iberian Peninsula. Wetlands, 2018, 38(4): 739-753. |
37 | Wright I J, Reich P B, Westoby M, et al. World-wide leaf economics spectrum. Nature, 2004, 428(6985): 821-827. |
[1] | 谢展, 穆麟, 张志飞, 陈桂华, 刘洋, 高帅, 魏仲珊. 乳酸菌或有机酸盐与尿素复配添加对紫花苜蓿混合青贮的影响[J]. 草业学报, 2021, 30(5): 165-173. |
[2] | 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟. 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定[J]. 草业学报, 2021, 30(5): 186-199. |
[3] | 罗巧玉, 王彦龙, 陈志, 马永贵, 任启梅, 马玉寿. 水分逆境对发草脯氨酸及其代谢途径的影响[J]. 草业学报, 2021, 30(5): 75-83. |
[4] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[5] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[6] | 刘凯强, 刘文辉, 贾志锋, 梁国玲, 马祥. 干旱胁迫对‘青燕1号’燕麦产量及干物质积累与分配的影响[J]. 草业学报, 2021, 30(3): 177-188. |
[7] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[8] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[9] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[10] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
[11] | 吴勇, 刘晓静, 蔺芳, 童长春. 河西荒漠灌区紫花苜蓿施肥效应及其基于数据包络分析法的经济效益研究[J]. 草业学报, 2020, 29(9): 94-105. |
[12] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[13] | 覃凤飞, 李志华, 刘信宝, 渠晖, 平措卓玛, 洛松群措, 苏梦涵. 外源2,4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响[J]. 草业学报, 2020, 29(9): 146-160. |
[14] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[15] | 曾令霜, 李培英, 孙晓梵, 孙宗玖. 新疆不同生境狗牙根种质抗旱性综合评价[J]. 草业学报, 2020, 29(8): 155-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||