草业学报 ›› 2023, Vol. 32 ›› Issue (9): 104-115.DOI: 10.11686/cyxb2022431
• 研究论文 • 上一篇
收稿日期:
2022-11-02
修回日期:
2023-01-13
出版日期:
2023-09-20
发布日期:
2023-07-12
通讯作者:
张前兵
作者简介:
E-mail: qbz102@163.com基金资助:
Xuan-shuai LIU(), Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG()
Received:
2022-11-02
Revised:
2023-01-13
Online:
2023-09-20
Published:
2023-07-12
Contact:
Qian-bing ZHANG
摘要:
探讨在施磷条件下接种不同比例丛枝菌根真菌(AMF)与解磷细菌(PSB)对紫花苜蓿各器官、不同部位磷含量及土壤有效磷含量的影响,为提高紫花苜蓿的磷肥利用效率及优质高产研究、制定科学合理的施肥制度提供理论依据。采用完全随机设计进行盆栽试验,设置5种接菌比例(AMF∶PSB)梯度[3∶7(J1)、4∶6(J2)、5∶5(J3)、6∶4(J4)和7∶3(J5)]和2种施磷(P2O5)水平[0(P0)和100 mg·kg-1(P1)],共计10个处理。通过对紫花苜蓿植株磷含量、土壤磷含量、干物质产量及磷素利用效率进行测定,并通过相关性分析明确紫花苜蓿植株磷含量、土壤磷含量、干物质产量及磷素利用效率之间的关系,通过隶属函数分析筛选出适合苜蓿生长的最佳菌磷耦合模式,明确菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征。结果表明:相同接菌条件下,紫花苜蓿的植株磷、茎磷、叶磷、花磷、根磷、上部磷、中部磷、下部磷、根际土壤有效磷、非根际土壤有效磷含量及干物质产量均为P1处理显著大于P0处理(P<0.05)。相同施磷条件下,紫花苜蓿的植株磷、茎磷、叶磷、花磷、根磷、上部磷、中部磷及下部磷均表现为J5处理显著大于其他接菌处理(P<0.05),而干物质产量表现为J1、J2、J3和J4处理显著大于J5处理(P<0.05),苜蓿各器官磷含量表现为:花>叶>根>茎;苜蓿各部位磷含量表现为:上部>中部>下部;土壤有效磷含量表现为:根际土>非根际土。菌磷耦合处理中,苜蓿总干物质产量和磷素利用效率均在J4P1处理达到最大值,分别为49.31 g·pot-1和27.23%。相关性分析表明,苜蓿植株磷含量、根际土壤磷含量、非根际土壤磷含量、磷素利用效率和总干物质产量两两互为正相关,其中,总干物质产量与根际土壤有效磷含量和磷素利用效率呈极显著正相关(P<0.01),与非根际土壤有效磷含量呈显著正相关(P<0.05)。根据隶属函数值大小排序,排名前3位的分别为J1P1、J3P1和J4P1处理。当施磷(P2O5)量为100 mg·kg-1及AMF和PSB为3∶7的双接菌比例下,能够较大程度地改善苜蓿的磷营养水平,进而提高苜蓿的干物质产量。
刘选帅, 孙延亮, 马春晖, 张前兵. 菌磷耦合下紫花苜蓿的干物质产量及磷素空间分布特征[J]. 草业学报, 2023, 32(9): 104-115.
Xuan-shuai LIU, Yan-liang SUN, Chun-hui MA, Qian-bing ZHANG. Dry matter yield and spatial distribution characteristics of phosphorus in alfalfa under bacterial-phosphorus coupling[J]. Acta Prataculturae Sinica, 2023, 32(9): 104-115.
项目 Item | Pa (%) | Ps (%) | Pl (%) | Pf (%) | Pr (%) | Pu (%) | Pm (%) | Pd (%) | Apr (mg·kg-1) | APn (mg·kg-1) | DMY (g·pot-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
茬次Cut | |||||||||||
第1茬First cut | 0.236 | 0.180 | 0.320 | 0.394 | 0.306 | 0.356 | 0.290 | 0.260 | 35.493 | 27.119 | 12.107 |
第2茬Second cut | 0.237 | 0.174 | 0.241 | 0.401 | 0.232 | 0.227 | 0.212 | 0.199 | 29.541 | 14.752 | 15.828 |
第3茬Third cut | 0.201 | 0.158 | 0.280 | 0.344 | 0.190 | 0.254 | 0.211 | 0.188 | 15.227 | 11.040 | 15.639 |
标准误Standard error | 0.012 | 0.007 | 0.023 | 0.018 | 0.034 | 0.039 | 0.026 | 0.022 | 6.014 | 4.861 | 1.210 |
磷Phosphorus (P) | |||||||||||
P0 | 0.200 | 0.152 | 0.258 | 0.347 | 0.226 | 0.259 | 0.226 | 0.201 | 19.247 | 14.949 | 13.521 |
P1 | 0.250 | 0.190 | 0.303 | 0.412 | 0.260 | 0.299 | 0.250 | 0.230 | 34.261 | 20.325 | 15.529 |
标准误Standard error | 0.025 | 0.019 | 0.023 | 0.033 | 0.017 | 0.020 | 0.012 | 0.015 | 7.507 | 2.688 | 1.004 |
菌Bacteria (J) | |||||||||||
J1 | 0.221 | 0.164 | 0.275 | 0.362 | 0.216 | 0.247 | 0.213 | 0.199 | 27.388 | 17.409 | 14.740 |
J2 | 0.216 | 0.173 | 0.280 | 0.368 | 0.209 | 0.271 | 0.230 | 0.216 | 28.267 | 16.743 | 15.177 |
J3 | 0.230 | 0.167 | 0.270 | 0.393 | 0.269 | 0.268 | 0.239 | 0.220 | 26.598 | 18.034 | 14.967 |
J4 | 0.217 | 0.166 | 0.280 | 0.361 | 0.249 | 0.290 | 0.242 | 0.200 | 25.563 | 16.469 | 15.075 |
J5 | 0.239 | 0.183 | 0.296 | 0.414 | 0.270 | 0.320 | 0.264 | 0.242 | 25.953 | 19.529 | 12.665 |
标准误Standard error | 0.004 | 0.003 | 0.004 | 0.010 | 0.013 | 0.012 | 0.008 | 0.008 | 0.489 | 0.546 | 0.471 |
P值P-values | |||||||||||
茬次Cut | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌Bacteria (J) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
磷Phosphorus (P) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×菌Cut×J | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.071 |
茬次×磷Cut×P | <0.001 | <0.001 | 0.940 | 0.012 | <0.001 | 0.123 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌×磷J×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.746 |
茬次×菌×磷Cut×J×P | <0.001 | <0.001 | <0.001 | 0.023 | <0.001 | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | 0.204 |
表1 紫花苜蓿磷含量相关指标的主效应均值和统计分析结果
Table 1 Main effect means and statistical analysis results of phosphorus content related indexes of alfalfa
项目 Item | Pa (%) | Ps (%) | Pl (%) | Pf (%) | Pr (%) | Pu (%) | Pm (%) | Pd (%) | Apr (mg·kg-1) | APn (mg·kg-1) | DMY (g·pot-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
茬次Cut | |||||||||||
第1茬First cut | 0.236 | 0.180 | 0.320 | 0.394 | 0.306 | 0.356 | 0.290 | 0.260 | 35.493 | 27.119 | 12.107 |
第2茬Second cut | 0.237 | 0.174 | 0.241 | 0.401 | 0.232 | 0.227 | 0.212 | 0.199 | 29.541 | 14.752 | 15.828 |
第3茬Third cut | 0.201 | 0.158 | 0.280 | 0.344 | 0.190 | 0.254 | 0.211 | 0.188 | 15.227 | 11.040 | 15.639 |
标准误Standard error | 0.012 | 0.007 | 0.023 | 0.018 | 0.034 | 0.039 | 0.026 | 0.022 | 6.014 | 4.861 | 1.210 |
磷Phosphorus (P) | |||||||||||
P0 | 0.200 | 0.152 | 0.258 | 0.347 | 0.226 | 0.259 | 0.226 | 0.201 | 19.247 | 14.949 | 13.521 |
P1 | 0.250 | 0.190 | 0.303 | 0.412 | 0.260 | 0.299 | 0.250 | 0.230 | 34.261 | 20.325 | 15.529 |
标准误Standard error | 0.025 | 0.019 | 0.023 | 0.033 | 0.017 | 0.020 | 0.012 | 0.015 | 7.507 | 2.688 | 1.004 |
菌Bacteria (J) | |||||||||||
J1 | 0.221 | 0.164 | 0.275 | 0.362 | 0.216 | 0.247 | 0.213 | 0.199 | 27.388 | 17.409 | 14.740 |
J2 | 0.216 | 0.173 | 0.280 | 0.368 | 0.209 | 0.271 | 0.230 | 0.216 | 28.267 | 16.743 | 15.177 |
J3 | 0.230 | 0.167 | 0.270 | 0.393 | 0.269 | 0.268 | 0.239 | 0.220 | 26.598 | 18.034 | 14.967 |
J4 | 0.217 | 0.166 | 0.280 | 0.361 | 0.249 | 0.290 | 0.242 | 0.200 | 25.563 | 16.469 | 15.075 |
J5 | 0.239 | 0.183 | 0.296 | 0.414 | 0.270 | 0.320 | 0.264 | 0.242 | 25.953 | 19.529 | 12.665 |
标准误Standard error | 0.004 | 0.003 | 0.004 | 0.010 | 0.013 | 0.012 | 0.008 | 0.008 | 0.489 | 0.546 | 0.471 |
P值P-values | |||||||||||
茬次Cut | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌Bacteria (J) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
磷Phosphorus (P) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
茬次×菌Cut×J | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.071 |
茬次×磷Cut×P | <0.001 | <0.001 | 0.940 | 0.012 | <0.001 | 0.123 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
菌×磷J×P | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.746 |
茬次×菌×磷Cut×J×P | <0.001 | <0.001 | <0.001 | 0.023 | <0.001 | <0.001 | <0.001 | <0.001 | 0.010 | <0.001 | 0.204 |
图1 不同处理下苜蓿植株磷含量J1、J2、J3、J4和J5指摩西管柄囊霉(g)与巨大芽孢杆菌(mL)的双接种比例分别为3∶7、4∶6、5∶5、6∶4和7∶3;P0和P1分别指施磷量为0和100 mg·kg-1。不同大写字母表示在相同施磷处理下,不同接菌比例间差异显著(P<0.05),不同小写字母表示在相同接菌比例下,不同施磷处理间差异显著(P<0.05)。下同。J1, J2, J3, J4 and J5 refer to the double inoculation ratio of F. mosseae (g) and B. megaterium (mL) at 3∶7, 4∶6, 5∶5, 6∶4, and 7∶3, respectively; P0 and P1 refer to the application of P at 0 and 100 mg·kg-1, respectively. Different capital letters indicate significant differences (P<0.05) among different bacterial inoculation ratio at the same phosphorus application treatment, while different lowercase letters indicate significant differences (P<0.05) between different phosphorus application treatments under the same ratio of bacterial inoculation. The same below.
Fig.1 Phosphorus content in alfalfa under different treatments
处理 Treatment | 干物质产量Dry matter yield (g·pot-1) | 总干物质产量 Total dry matter yield (g·pot-1) | 磷素利用效率 Phosphorus use efficiency (%) | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第3茬Third cut | ||||
J1P0 | 10.90±0.62Bb | 16.37±1.30Aa | 13.93±1.07Ab | 41.20 | - | |
J1P1 | 12.45±1.96Ba | 16.67±0.90Aa | 18.12±2.03Aa | 47.24 | 20.13 | |
J2P0 | 13.13±0.95Aa | 15.87±1.31ABa | 13.72±0.47Ab | 42.72 | - | |
J2P1 | 14.08±0.32Aa | 16.23±1.26Aa | 18.03±0.80ABa | 48.34 | 18.73 | |
J3P0 | 13.03±0.38Aa | 14.25±0.55ABb | 14.95±1.04Ab | 42.23 | - | |
J3P1 | 13.55±1.11ABa | 16.95±2.46Aa | 17.07±1.95ABa | 47.57 | 17.80 | |
J4P0 | 10.60±2.04Bb | 16.87±2.28Aa | 13.67±1.38Ab | 41.14 | - | |
J4P1 | 14.28±0.49Aa | 17.05±3.78Aa | 17.98±1.94ABa | 49.31 | 27.23 | |
J5P0 | 8.90±1.07Ca | 13.55±1.59Ba | 13.07±0.31Ab | 35.52 | - | |
J5P1 | 10.15±0.24Ca | 14.47±1.83Aa | 15.85±0.53Ba | 40.47 | 16.50 |
表2 不同处理下紫花苜蓿的干物质产量和磷素利用效率
Table 2 Dry matter yield and phosphorus use efficiency of alfalfa under different treatments
处理 Treatment | 干物质产量Dry matter yield (g·pot-1) | 总干物质产量 Total dry matter yield (g·pot-1) | 磷素利用效率 Phosphorus use efficiency (%) | |||
---|---|---|---|---|---|---|
第1茬First cut | 第2茬Second cut | 第3茬Third cut | ||||
J1P0 | 10.90±0.62Bb | 16.37±1.30Aa | 13.93±1.07Ab | 41.20 | - | |
J1P1 | 12.45±1.96Ba | 16.67±0.90Aa | 18.12±2.03Aa | 47.24 | 20.13 | |
J2P0 | 13.13±0.95Aa | 15.87±1.31ABa | 13.72±0.47Ab | 42.72 | - | |
J2P1 | 14.08±0.32Aa | 16.23±1.26Aa | 18.03±0.80ABa | 48.34 | 18.73 | |
J3P0 | 13.03±0.38Aa | 14.25±0.55ABb | 14.95±1.04Ab | 42.23 | - | |
J3P1 | 13.55±1.11ABa | 16.95±2.46Aa | 17.07±1.95ABa | 47.57 | 17.80 | |
J4P0 | 10.60±2.04Bb | 16.87±2.28Aa | 13.67±1.38Ab | 41.14 | - | |
J4P1 | 14.28±0.49Aa | 17.05±3.78Aa | 17.98±1.94ABa | 49.31 | 27.23 | |
J5P0 | 8.90±1.07Ca | 13.55±1.59Ba | 13.07±0.31Ab | 35.52 | - | |
J5P1 | 10.15±0.24Ca | 14.47±1.83Aa | 15.85±0.53Ba | 40.47 | 16.50 |
指标 Index | 总干物质产量 Total dry matter yield | 苜蓿植株磷含量P content in alfalfa | 根际土壤有效磷含量 Available P content of rhizosphere soil | 非根际土壤有效磷含量 Available P content of non-rhizosphere soil |
---|---|---|---|---|
苜蓿植株磷含量P content in alfalfa | 0.460 | |||
根际土壤有效磷含量Available P content of rhizosphere soil | 0.777** | 0.838** | ||
非根际土壤有效磷含量Available P content of non-rhizosphere soil | 0.652* | 0.623* | 0.841** | |
磷素利用效率P use efficiency | 0.784** | 0.835** | 0.955** | 0.845** |
表3 各指标相关性分析
Table 3 Correlation analysis of each index
指标 Index | 总干物质产量 Total dry matter yield | 苜蓿植株磷含量P content in alfalfa | 根际土壤有效磷含量 Available P content of rhizosphere soil | 非根际土壤有效磷含量 Available P content of non-rhizosphere soil |
---|---|---|---|---|
苜蓿植株磷含量P content in alfalfa | 0.460 | |||
根际土壤有效磷含量Available P content of rhizosphere soil | 0.777** | 0.838** | ||
非根际土壤有效磷含量Available P content of non-rhizosphere soil | 0.652* | 0.623* | 0.841** | |
磷素利用效率P use efficiency | 0.784** | 0.835** | 0.955** | 0.845** |
处理 Treatment | 植株磷含量 Phosphorus content in alfalfa | 非根际土壤有效磷含量 Available phosphorus content in non-rhizosphere soil | 根际土壤有效磷含量 Available phosphorus content in rhizosphere soil | 干物质产量 Dry matter yield | 磷素利用效率 Phosphorus use efficiency | 平均值 Average | 排序 Rank |
---|---|---|---|---|---|---|---|
J1P0 | 0.138 | 0.000 | 0.000 | 0.412 | 0.000 | 0.110 | 10 |
J1P1 | 0.813 | 0.590 | 1.000 | 0.850 | 0.739 | 0.798 | 1 |
J2P0 | 0.000 | 0.003 | 0.258 | 0.522 | 0.000 | 0.157 | 7 |
J2P1 | 0.813 | 0.437 | 0.832 | 0.930 | 0.688 | 0.740 | 5 |
J3P0 | 0.263 | 0.014 | 0.078 | 0.487 | 0.000 | 0.168 | 6 |
J3P1 | 0.900 | 0.717 | 0.841 | 0.874 | 0.654 | 0.797 | 2 |
J4P0 | 0.200 | 0.003 | 0.014 | 0.408 | 0.000 | 0.125 | 8 |
J4P1 | 0.638 | 0.375 | 0.799 | 1.000 | 1.000 | 0.762 | 3 |
J5P0 | 0.413 | 0.081 | 0.070 | 0.000 | 0.000 | 0.113 | 9 |
J5P1 | 1.000 | 1.000 | 0.785 | 0.359 | 0.606 | 0.750 | 4 |
表4 不同处理下各指标隶属函数分析
Table 4 Membership function analysis of each index under different treatments
处理 Treatment | 植株磷含量 Phosphorus content in alfalfa | 非根际土壤有效磷含量 Available phosphorus content in non-rhizosphere soil | 根际土壤有效磷含量 Available phosphorus content in rhizosphere soil | 干物质产量 Dry matter yield | 磷素利用效率 Phosphorus use efficiency | 平均值 Average | 排序 Rank |
---|---|---|---|---|---|---|---|
J1P0 | 0.138 | 0.000 | 0.000 | 0.412 | 0.000 | 0.110 | 10 |
J1P1 | 0.813 | 0.590 | 1.000 | 0.850 | 0.739 | 0.798 | 1 |
J2P0 | 0.000 | 0.003 | 0.258 | 0.522 | 0.000 | 0.157 | 7 |
J2P1 | 0.813 | 0.437 | 0.832 | 0.930 | 0.688 | 0.740 | 5 |
J3P0 | 0.263 | 0.014 | 0.078 | 0.487 | 0.000 | 0.168 | 6 |
J3P1 | 0.900 | 0.717 | 0.841 | 0.874 | 0.654 | 0.797 | 2 |
J4P0 | 0.200 | 0.003 | 0.014 | 0.408 | 0.000 | 0.125 | 8 |
J4P1 | 0.638 | 0.375 | 0.799 | 1.000 | 1.000 | 0.762 | 3 |
J5P0 | 0.413 | 0.081 | 0.070 | 0.000 | 0.000 | 0.113 | 9 |
J5P1 | 1.000 | 1.000 | 0.785 | 0.359 | 0.606 | 0.750 | 4 |
1 | Parihar M, Meena V S, Mishra P K, et al. Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Archives of Microbiology, 2019, 201(6): 723-735. |
2 | Nobile C M, Bravin M N, Becquer T, et al. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of pH and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere, 2020, 239: 124709. |
3 | Friesen M L, Porter S S, Stark S C, et al. Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 2011, 42: 23-46. |
4 | Sun Y M, Zhang Q B, Miao X R, et al. Effects of phosphorus-solubilizing bacteria and arbuscular mycorrhizal fungi on production performance and root biomass of alfalfa. Scientia Agricultura Sinica, 2019, 52(13): 2230-2242. |
孙艳梅, 张前兵, 苗晓茸, 等. 解磷细菌和丛枝菌根真菌对紫花苜蓿生产性能及地下生物量的影响. 中国农业科学, 2019, 52(13): 2230-2242. | |
5 | Willmann M, Gerlach N, Buer B, et al. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 2013, 4: 533. |
6 | Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics from soil to plant. Plant Physiology, 2011, 156: 997-1005. |
7 | Peng Q, He H H, Zhang X C. Mechanisms of increasing alfalfa growth and phosphorus uptake by inoculation with arbuscular mycorrhizal fungal under low phosphorus application level. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 293-300. |
彭琪, 何红花, 张兴昌. 低磷环境下接种丛枝菌根真菌促进紫花苜蓿生长和磷素吸收的机理. 植物营养与肥料学报, 2021, 27(2): 293-300. | |
8 | Osonubi O. Comparative effects of vesicular-arbuscular mycorrhizal inoculation and phosphorus fertilization on growth and phosphorus uptake of maize (Zea mays L.) and sorghum (Sorghum bicolor L.) plants under drought-stressed conditions. Biology and Fertility of Soils, 1994, 18(1): 55-59. |
9 | Zhu J, Li M, Whelan M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of the Total Environment, 2018, 612: 522-537. |
10 | Son H J, Park G T, Cha M S, et al. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresource Technology, 2006, 97(2): 204-210. |
11 | Ogut M, Er F. Mineral composition of field grown winter wheat inoculated with phosphorus solubilizing bacteria at different plant growth stages. Journal of Plant Nutrition, 2016, 39(4): 479-490. |
12 | Liu J Y, Liu X S, Zhang Q B, et al. Response of alfalfa growth to arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria under different phosphorus application levels. AMB Express, 2020, 10(1): 1-13. |
13 | Fu X F, Zhang G P, Zhang X W, et al. Effects of PSB and AMF on growth, microorganisms and soil enzyme activities in the rhizosphere of Taxus chinensis var.mairei seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(2): 353-360. |
付晓峰, 张桂萍, 张小伟, 等. 溶磷细菌和丛枝菌根真菌接种对南方红豆杉生长及根际微生物和土壤酶活性的影响. 西北植物学报, 2016, 36(2): 353-360. | |
14 | Xinjiang Production and Construction Corps Soil Census Office. Xinjiang production and construction corps reclamation area soil. Urumqi: Xinjiang Science and Technology Health Press, 1993. |
新疆生产建设兵团土壤普查办公室. 新疆生产建设兵团垦区土壤. 乌鲁木齐: 新疆科技卫生出版社, 1993. | |
15 | Bao S D. Methods of soil agricultural chemical analysis (3rd Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
16 | Ma Q, Liu X Y, Ran J Y, et al. Improving phosphorus use efficiency of spring maize by reducing phosphate fertilizer rate and replacing urea with ammonium sulfate in dryland of Northwest China. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1047-1058. |
马琴, 刘小雨, 冉瑾怡, 等. 磷肥减量结合硫酸铵配施提高西北地区旱地春玉米磷素利用效率. 植物营养与肥料学报, 2020, 26(6): 1047-1058. | |
17 | Jiang C, Li X, Zou J, et al. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC Plant Biology, 2021, 21(1): 1-14. |
18 | Liu J Y, Hui J F, Sun M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi (AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149. |
刘俊英, 回金峰, 孙梦瑶, 等. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响. 农业工程学报, 2020, 36(19): 142-149. | |
19 | Bender S F, Heijden V D M G A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of Applied Ecology, 2015, 52(1): 228-239. |
20 | Ezawa T, Cavagnaro T R, Smith S E, et al. Rapid accumulation of polyphosphate in extraradical hyphae of an arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytologist, 2004, 161(2): 387-392. |
21 | Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250. |
22 | Shan L W, Zhang Q, Zhu R F, et al. Effects of AMF on growth and photosynthetic physiological characteristics of Leymus chinensis and Medicago sativa with and without nitrogen and phosphorus application. Acta Prataculturae Sinica, 2020, 29(8): 46-57. |
单立文, 张强, 朱瑞芬, 等. 氮、磷添加下AMF对羊草和苜蓿生长与光合生理特性的影响. 草业学报, 2020, 29(8): 46-57. | |
23 | Xue Y L, Li C Y, Wang C R, et al. Mechanisms of phosphorus uptake from soils by arbuscular mycorrhizal fungi. Journal of Soil and Water Conservation, 2019, 33(6): 10-20. |
薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制. 水土保持学报, 2019, 33(6): 10-20. | |
24 | Zhang L, Fan J, Ding X, et al. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biology and Biochemistry, 2014, 74: 177-183. |
25 | Li H S. Modern plant physiology (3rd Edition). Beijing: Higher Education Press, 2012. |
李合生. 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. | |
26 | Liu J, Yang J J. Molecular speciation of phosphorus in agricultural soils: advances over the last 30 years. Acta Pedologica Sinica, 2021, 58(3): 558-567. |
刘瑾, 杨建军. 近三十年农田土壤磷分子形态的研究进展. 土壤学报, 2021, 58(3): 558-567. | |
27 | Li N, Yang J F, Liu H J, et al. Response of soil phosphorus to P balance under long-term rotation and fertilization in brown soil. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1697-1703. |
李娜, 杨劲峰, 刘侯俊, 等. 长期轮作施肥棕壤磷素对磷盈亏的响应. 植物营养与肥料学报, 2018, 24(6): 1697-1703. | |
28 | Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 2006, 287(1): 15-21. |
29 | Lin Q M. Interference of soil soluble inorganic P in measurement of soil microbial biomass P. Acta Ecologica Sinica, 2001, 21(6): 993-996. |
林启美. 土壤可溶性无机磷对微生物生物量磷测定的干扰. 生态学报, 2001, 21(6): 993-996. | |
30 | Hussain S, Sharif M, Ahmad W. Selection of efficient phosphorus solubilizing bacteria strains and mycorrhizae for enhanced cereal growth, root microbe status and N and P uptake in alkaline calcareous soil. Soil Science and Plant Nutrition, 2021, 67(3): 259-268. |
31 | Schröder J J, Smit A L, Cordell D, et al. Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere, 2011, 84(6): 822-831. |
[1] | 徐蕊, 王峥, 王仪明, 苏连泰, 高鲤, 周鹏, 安渊. 紫花苜蓿对轮作水稻产量和蔗糖代谢的影响[J]. 草业学报, 2023, 32(8): 129-140. |
[2] | 王宝强, 马文静, 王贤, 朱晓林, 赵颖, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿幼苗次生代谢产物的影响[J]. 草业学报, 2023, 32(8): 141-151. |
[3] | 凌文卿, 张磊, 李珏, 冯启贤, 李妍, 周燚, 刘一佳, 阳伏林, 周晶. 布氏乳杆菌和不同糖类联用对紫花苜蓿青贮营养成分、发酵品质、瘤胃降解率及有氧稳定性的影响[J]. 草业学报, 2023, 32(7): 122-134. |
[4] | 王少鹏, 刘佳, 洪军, 林积圳, 张义, 史昆, 王赞. 紫花苜蓿MsPPR1基因的克隆及抗旱功能分析[J]. 草业学报, 2023, 32(7): 49-60. |
[5] | 安晓霞, 张盈盈, 马春晖, 李曼, 张前兵. 施磷与接种丛枝菌根真菌对苜蓿产量和磷素利用效率的影响[J]. 草业学报, 2023, 32(6): 71-84. |
[6] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[7] | 张振粉, 黄荣, 姚博, 张旺东, 杨成德, 陈秀蓉. 欧美进口紫花苜蓿可培养种带细菌及其对动植物的致病性[J]. 草业学报, 2023, 32(4): 161-172. |
[8] | 张士敏, 赵娇阳, 朱慧森, 卫凯, 王永新. 硒对不同品种紫花苜蓿发芽阶段物质转化和形态建成的影响[J]. 草业学报, 2023, 32(4): 79-90. |
[9] | 王园, 王晶, 李淑霞. 紫花苜蓿MsBBX24基因的克隆及耐盐性分析[J]. 草业学报, 2023, 32(3): 107-117. |
[10] | 田政, 杨正禹, 陆忠杰, 罗奔, 张茂, 董瑞. 44个紫花苜蓿品种的酸铝适应性与耐受性评价[J]. 草业学报, 2023, 32(3): 142-151. |
[11] | 孙守江, 唐艺涵, 马馼, 李曼莉, 毛培胜. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3): 152-162. |
[12] | 赵艳兰, 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3): 179-188. |
[13] | 刘选帅, 孙延亮, 安晓霞, 马春晖, 张前兵. 施磷和接种解磷菌对紫花苜蓿光合特性及生物量的影响[J]. 草业学报, 2023, 32(3): 189-199. |
[14] | 王晓龙, 杨曌, 来永才, 李红, 钟鹏, 徐艳霞, 柴华, 李莎莎, 吴玥, 宋敏超, 周景明. 不同秋眠等级苜蓿根系性状对越冬的影响[J]. 草业学报, 2023, 32(1): 144-153. |
[15] | 孙延亮, 赵俊威, 刘选帅, 李生仪, 马春晖, 王旭哲, 张前兵. 施氮对苜蓿初花期光合日变化、叶片形态及干物质产量的影响[J]. 草业学报, 2022, 31(9): 63-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||