草业学报 ›› 2023, Vol. 32 ›› Issue (3): 179-188.DOI: 10.11686/cyxb2022101
• 研究论文 • 上一篇
赵艳兰(), 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼()
收稿日期:
2022-03-01
修回日期:
2022-04-22
出版日期:
2023-03-20
发布日期:
2022-12-30
通讯作者:
周冀琼
作者简介:
E- mail: jiqiong_zhou@ sicau.edu.cn基金资助:
Yan-lan ZHAO(), Xin-yi ZENG, Jin-chao GONG, Xiang-jun LI, Xu-xu LI, Shan LIU, Xin-quan ZHANG, Ji-qiong ZHOU()
Received:
2022-03-01
Revised:
2022-04-22
Online:
2023-03-20
Published:
2022-12-30
Contact:
Ji-qiong ZHOU
摘要:
丛枝菌根真菌(AMF)可与植物共生形成复杂的菌丝网络, 影响植物生长及抗逆能力。目前关于AMF对白车轴草耐盐性的影响尚存争议, 本研究采用盆栽试验, 研究在盐胁迫条件下(NaCl浓度为150 mmol·L-1), 接种AMF对拉丁诺白车轴草耐盐性的影响。结果表明, 在盐胁迫条件下, 与对照相比, 白车轴草的生长与生理指标均受到抑制。盐胁迫下接种AMF后, 白车轴草株高、干重、PSⅡ最大光能转换效率和相对含水量均有增加, 丙二醛(MDA)含量以及相对电导率有所降低, 渗透调节物质均有提高, 其中可溶性糖(SS)和游离脯氨酸(Pro)含量分别提高了32.03%和9.42%。说明盐胁迫抑制白车轴草的生长, 接种AMF增强了白车轴草抗逆适应能力, 促进白车轴草的生长, 增加渗透调节物质含量, 提高白车轴草耐盐胁迫的能力。
赵艳兰, 曾鑫奕, 弓晋超, 李香君, 李旭旭, 刘珊, 张新全, 周冀琼. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3): 179-188.
Yan-lan ZHAO, Xin-yi ZENG, Jin-chao GONG, Xiang-jun LI, Xu-xu LI, Shan LIU, Xin-quan ZHANG, Ji-qiong ZHOU. Effect of arbuscular mycorrhizal fungi on the salt tolerance of Trifolium repens[J]. Acta Prataculturae Sinica, 2023, 32(3): 179-188.
变量 Variables | 丛枝菌根真菌 AMF | 盐胁迫 Salt stress | 丛枝菌根真菌×盐胁迫AMF×Salt stress |
---|---|---|---|
株高Plant height | 0.001*** | <0.001*** | 0.655 |
干重Dry weight | <0.001*** | 0.183 | 0.452 |
丙二醛Malondialdehyde | 0.321 | <0.001*** | 0.321 |
相对电导率Relative electrolyte leakage | <0.001*** | 0.001*** | 0.638 |
PSⅡ最大光能转换效率Maximal photochemical efficiency of PSⅡ (Fv/Fm) | 0.001*** | 0.005** | 0.754 |
相对含水量Relative water content | 0.043* | 0.004** | 0.400 |
可溶性糖Soluble sugar | 0.004** | 0.001*** | 0.107 |
游离脯氨酸Free proline | 0.040* | <0.001*** | 0.425 |
表1 丛枝菌根真菌及盐胁迫对白车轴草的主要形态和生理指标的方差分析
Table 1 Analysis of variance of main morphological and physiological indicators of T. repens by AMF and salt stress
变量 Variables | 丛枝菌根真菌 AMF | 盐胁迫 Salt stress | 丛枝菌根真菌×盐胁迫AMF×Salt stress |
---|---|---|---|
株高Plant height | 0.001*** | <0.001*** | 0.655 |
干重Dry weight | <0.001*** | 0.183 | 0.452 |
丙二醛Malondialdehyde | 0.321 | <0.001*** | 0.321 |
相对电导率Relative electrolyte leakage | <0.001*** | 0.001*** | 0.638 |
PSⅡ最大光能转换效率Maximal photochemical efficiency of PSⅡ (Fv/Fm) | 0.001*** | 0.005** | 0.754 |
相对含水量Relative water content | 0.043* | 0.004** | 0.400 |
可溶性糖Soluble sugar | 0.004** | 0.001*** | 0.107 |
游离脯氨酸Free proline | 0.040* | <0.001*** | 0.425 |
处理Treatments | 株高Plant height (cm) | 干重Dry weight (g·m-2) |
---|---|---|
CK | 14.26±1.0464b | 0.720±0.1775b |
M | 19.23±1.2875a | 2.263±0.0297a |
S | 7.14±0.3871c | 0.350±0.0849b |
MS | 13.19±1.0777b | 2.153±0.2654a |
表2 盐胁迫下AMF对白车轴草生长情况的影响
Table 2 Effects of AMF on the growth of T. repens under salt stress
处理Treatments | 株高Plant height (cm) | 干重Dry weight (g·m-2) |
---|---|---|
CK | 14.26±1.0464b | 0.720±0.1775b |
M | 19.23±1.2875a | 2.263±0.0297a |
S | 7.14±0.3871c | 0.350±0.0849b |
MS | 13.19±1.0777b | 2.153±0.2654a |
图1 盐胁迫下AMF对白车轴草叶片丙二醛含量和相对电导率的影响不同小写字母代表不同处理间差异显著(P<0.05), 下同。Different lowercase letters indicate significant differences among different treatments at the 0.05 level, the same below.
Fig.1 Effects of AMF on malondialdehyde content and relative electrolyte leakage of T. repens leaves under salt stress
图2 盐胁迫下AMF对白车轴草PSⅡ最大光能转换效率和相对含水量的影响
Fig.2 Effect of AMF on maximal photochemical efficiency of PSⅡ and relative water content of T. repens under salt stress
变量Variable | 轴1 AX1 | 轴2 AX2 |
---|---|---|
株高Plant height | -0.9141 | -0.3625 |
干重Dry weight | -0.9433 | 0.3262 |
丙二醛Malondialdehyde | 0.7166 | 0.4986 |
相对电导率Relative electrolyte leakage | 0.9017 | 0.1254 |
PSⅡ最大光能转换效率Maximal photochemical efficiency of PSⅡ (Fv/Fm) | -0.3541 | 0.7960 |
相对含水量Relative water content | -0.7404 | -0.3800 |
可溶性糖Soluble sugar | -0.2024 | 0.8409 |
游离脯氨酸Free proline | 0.0876 | 0.8861 |
特征值Eigenvalue | 0.8222 | 0.1207 |
表3 PCA中各变量的载荷
Table 3 Variable scores values from PCA
变量Variable | 轴1 AX1 | 轴2 AX2 |
---|---|---|
株高Plant height | -0.9141 | -0.3625 |
干重Dry weight | -0.9433 | 0.3262 |
丙二醛Malondialdehyde | 0.7166 | 0.4986 |
相对电导率Relative electrolyte leakage | 0.9017 | 0.1254 |
PSⅡ最大光能转换效率Maximal photochemical efficiency of PSⅡ (Fv/Fm) | -0.3541 | 0.7960 |
相对含水量Relative water content | -0.7404 | -0.3800 |
可溶性糖Soluble sugar | -0.2024 | 0.8409 |
游离脯氨酸Free proline | 0.0876 | 0.8861 |
特征值Eigenvalue | 0.8222 | 0.1207 |
1 | Zhao X, Ye L, Na X W, et al. Influence of arbuscular mycorrhizal fungus on the osmotic adjustment substance and antioxidant system of Medicago sativa under salt-alkaline stress. Jiangsu Journal of Agricultural Sciences, 2017, 33(4): 782-787. |
赵霞, 叶林, 纳学伟, 等. 盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响. 江苏农业学报, 2017, 33(4): 782-787. | |
2 | Pan J, Huang C H, Luo J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants. Advances in Earth Science, 2018, 33(4): 361-372. |
潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制. 地球科学进展, 2018, 33(4): 361-372. | |
3 | Feng S C. Analysis of existing problems in soil and methods of restoration. The Farmers Consultant, 2019(24): 9. |
冯树成. 浅析土壤存在问题及修复办法. 农家参谋, 2019(24): 9. | |
4 | Evelin H, Devi T S, Gupta S, et al. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science, 2019, 10: 470. |
5 | Pan L Q, Wei H Z, Zhang H, et al. Effects of chitosan on seed germination and seedling growth of Trifolium repens under salt stress. Molecular Plant Breeding, 2018, 16(11): 3740-3744. |
潘丽芹, 韦海忠, 张浩, 等. 壳聚糖对盐胁迫下白车轴草种子萌发及幼苗生长的缓解作用. 分子植物育种, 2018, 16(11): 3740-3744. | |
6 | Wang S X, Liu W, Li P J. Advances of researches in plant-improvement of saline-alkaline soil. Chinese Agricultural Science Bulletin, 2011, 27(24): 1-7. |
王善仙, 刘宛, 李培军. 盐碱土植物改良研究进展. 中国农学通报, 2011, 27(24): 1-7. | |
7 | Kong J. Research on the effects of arbuscular mycorrhizal fungi on the drought resistance of several kinds of plant. Beijing: China University of Mining and Technology, 2015. |
孔静. 丛枝菌根真菌对几种草本植物抗旱性的影响研究. 北京: 中国矿业大学, 2015. | |
8 | Zhou J Q, Zhang Y, Zhang M Y, et al. Effect of arbuscular mycorrhizal fungi on reducing nitrogen fertilizer dosage in substrate cultivation of lettuce and spinach. China Vegetables, 2021(10): 57-65. |
周佳琦, 张钰, 张梦燚, 等. 丛枝菌根真菌对基质栽培叶用莴苣和菠菜氮肥用量的减施效果. 中国蔬菜, 2021(10): 57-65. | |
9 | Zhang X, Zhang H, Zhang Y, et al. Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress. Environmental and Experimental Botany, 2020, 171: 103950. |
10 | Yang C X, Yue Y N. Research progress in the mechanism of plant salt tolerance enhanced by arbuscular mycorrhizal fungi. Guizhou Agricultural Sciences, 2014, 42(8): 135-138. |
杨春雪, 岳英男. 丛枝菌根真菌提高植物耐盐性的研究进展. 贵州农业科学, 2014, 42(8): 135-138. | |
11 | He Z Q, He C X, Zhang Z B, et al. Mechanism of plant salt tolerance enhanced by arbuscular mycorrhizal fungi. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2): 414-420. |
贺忠群, 贺超兴, 张志斌, 等. 丛枝菌根真菌提高植物耐盐性的作用机制. 西北植物学报, 2007, 27(2): 414-420. | |
12 | Ruiz-Lozano J M, Porcel R, Azcón C, et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 2012, 63(11): 4033-4044. |
13 | Mitra D, Djebaili R, Pellegrini M, et al. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. Journal of Plant Nutrition, 2021, 44(13): 1-37. |
14 | Lin Z R, Zhang Y J. Effect of arbuscular mycorrhizal fungi and phosphorus on growth and physiological properties of alfalfa seedlings under drought stress. Pratacultural Science, 2018, 35(1): 115-122. |
林子然, 张英俊. 丛枝菌根真菌和磷对干旱胁迫下紫花苜蓿幼苗生长与生理特征的影响. 草业科学, 2018, 35(1): 115-122. | |
15 | Augé R M, Toler H D, Saxton A M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: A meta-analysis. Frontiers in Plant Science, 2014, 5: 562. |
16 | Sun S M, Chang W, Song F Q. Mechanism of arbuscular mycorrhizal fungi improve the oxidative stress to the host plants under salt stress: A review.Chinese Journal of Applied Ecology, 2020, 31(10): 3589-3596. |
孙思淼, 常伟, 宋福强. 丛枝菌根真菌提高盐胁迫植物抗氧化机制的研究进展. 应用生态学报, 2020, 31(10): 3589-3596. | |
17 | Tang R J, Liu H, Bao Y, et al. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Molecular Biology, 2010, 74(4/5): 367-380. |
18 | Amiri R, Nikbakht A, Etemadi N, et al. Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis, 2017, 73(1): 15-25. |
19 | Heinisch J J, Rodicio R. Protein kinase C in fungi-more than just cell wall integrity. FEMS Microbiology Reviews, 2018, 42(1): 22-39. |
20 | Bothe H. Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis, 2012, 58(1): 7-16. |
21 | Basu S, Rabara R C, Negi S. AMF: The future prospect for sustainable agriculture. Physiological & Molecular Plant Pathology, 2018, 102: 36-45. |
22 | Rogers J B, Christie P, Laidlaw A S. Some evidence of host specificity in arbuscular mycorrhizas. Pedosphere, 1994, 4(4): 377-381. |
23 | Poss J A, Pond E, Menge J A, et al. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant and Soil, 1985, 88(3): 307-319. |
24 | Pan Y, Zhou J Q, Guo C, et al. Arbuscular mycorrhizal fungi and rhizobia regulate plant interspecific interaction of three legumes and grasses species. Acta Agrestia Sinica, 2021, 29(4): 644-654. |
潘越, 周冀琼, 郭川, 等. 丛枝菌根真菌与根瘤菌对3种豆禾混播植物种间互作的影响. 草地学报, 2021, 29(4): 644-654. | |
25 | Zheng J H, Chen H Y, Li J Q, et al. The effects of different soil sterilization treatments on soil microbial activity. Journal of Fudan University (Natural Science Edition), 2017, 56(6): 681-691. |
郑嘉慧, 陈鸿洋, 李金全, 等. 不同土壤灭菌方法对土壤微生物活性的影响. 复旦学报(自然科学版), 2017, 56(6): 681-691. | |
26 | Johnson N C, Wilson G W T, Bowker M A, et al. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences, 2010, 107(5): 2093-2098. |
27 | Xiong X. Salt tolerance mechanism of alfalfa under non-uniform salt stress. Nanjing: Nanjing Agricultural University, 2019. |
熊雪. 紫花苜蓿在不均匀盐胁迫下的耐盐机制. 南京: 南京农业大学, 2019. | |
28 | Lu Y M, Su C Q, Li H F. Effects of different salts stress on seed germination and seedling growth of Trifolium repens. Acta Prataculturae Sinica, 2013, 22(4): 123-129. |
卢艳敏, 苏长青, 李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响. 草业学报, 2013, 22(4): 123-129. | |
29 | Liu H C, Jia W Q. Study on some physiological characteristics of Trifolium repens leaves under salt stress. Guangdong Agricultural Sciences, 2008(12): 58-60. |
刘会超, 贾文庆. 盐胁迫对白三叶草幼苗叶片叶绿素含量和细胞膜透性的影响. 广东农业科学, 2008(12): 58-60. | |
30 | Zhang H Y, Wang B Q, Feng X Y, et al. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.]. Acta Agronomica Sinica, 2020, 46(11): 1760-1770. |
张海燕, 汪宝卿, 冯向阳, 等. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46(11): 1760-1770. | |
31 | Li L L. Research of the effect of dominant AM fungi from Inula japonica rhizosphere on salt-alkali tolerance of Trifolium repence. Harbin: Northeast Forestry University, 2016. |
李丽丽. 旋覆花根围优势AM真菌对白花三叶草耐盐碱特性影响研究. 哈尔滨: 东北林业大学, 2016. | |
32 | Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 1999, 16(4): 444-448. |
张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16(4): 444-448. | |
33 | Chen C, He X D, Qin J Z, et al. Comparison of chlorophyll fluorescence Fv/Fm characteristics of four michelia trees. Journal of Anhui Agricultural University, 2013, 40(1): 32-37. |
陈辰, 何小定, 秦金舟, 等. 4种含笑叶片叶绿素荧光参数Fv/Fm特性的比较. 安徽农业大学学报, 2013, 40(1): 32-37. | |
34 | Dhindsa R S, Plumb-Dhindsa P, Thorpe T A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32(1): 93-101. |
35 | Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 1981, 21(1): 43-47. |
36 | Li H S. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2000: 195-196. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 195-196. | |
37 | Gu Y, Zhao Y, Ji C D. Effects of silicon fertilizer on physiological and biochemical characteristics of three bermuda grass under salinity stress. Chinese Journal of Grassland, 2019, 41(3): 30-37. |
顾跃, 赵云, 姬承东. 硅肥对盐胁迫下狗牙根生理生化特征的影响. 中国草地学报, 2019, 41(3): 30-37. | |
38 | Jia X Y, Chong P F, Zhang Y J, et al. Effects of nitric oxide on physiological characteristics and growth of Reaumuria soongorica seedling under NaCl stress. Acta Agrestia Sinica, 2019, 27(3): 628-636. |
贾向阳, 种培芳, 张玉洁, 等. 外源NO对NaCl胁迫下红砂幼苗生长和生理特性的影响. 草地学报, 2019, 27(3): 628-636. | |
39 | Gomes F P, Oliva M A, Mielke M S, et al. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Scientia Horticulturae, 2010, 126(3): 379-384. |
40 | Yang H W, Liu W Y, Shen B Y, et al. Seed germination and physiological characteristics of Chenopodium quinoa under salt stress. Acta Prataculturae Sinica, 2017, 26(8): 146-153. |
杨宏伟, 刘文瑜, 沈宝云, 等. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响. 草业学报, 2017, 26(8): 146-153. | |
41 | Qi Q, Ma S R, Xu W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance. Molecular Plant Breeding, 2020, 18(8): 2741-2746. |
齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展. 分子植物育种, 2020, 18(8): 2741-2746. | |
42 | Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
43 | Begum N, Qin C, Ahanger M A, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science, 2019, 10: 1068. |
44 | Zhong M, Huang Y Z, Wu W, et al. Effect of AMF community on the biomass of white clover, uptake of phosphorus and soil phosphomonoesterase activities. Journal of Agro-Environment Science, 2012, 31(9): 1770-1776. |
钟敏, 黄益宗, 伍文, 等. 丛枝菌根真菌群落对白车轴草植株生物量磷吸收和土壤磷酸单酯酶活性的影响. 农业环境科学学报, 2012, 31(9): 1770-1776. | |
45 | Huang S C, Chen F, Li L L, et al. Effect of AMF on growth and physio-biochemistry of Trifolium repens under stress of salt alkaline soil in Songnen Plain. Guizhou Agricultural Sciences, 2017, 45(7): 61-67. |
黄寿臣, 陈飞, 李丽丽, 等. 松嫩平原盐碱土AM真菌对白花三叶草生长及生理生化的影响. 贵州农业科学, 2017, 45(7): 61-67. | |
46 | Ren C G, Kong C C, Li Y, et al. Advances in salt tolerance ability of arbuscular mycorrhizal fungi-plant symbionts. Scientia Sinica Vitae, 2016, 46(9): 1062-1068. |
任承钢, 孔存翠, 李岩, 等. 丛枝菌根真菌-植物共生体耐盐机制的研究进展. 中国科学: 生命科学, 2016, 46(9): 1062-1068. | |
47 | Yang H X, Li S M, Li M, et al. Effects of arbuscular mycorrhizal fungi on salinity tolerance of Trifolium repens. Journal of Qingdao Agricultural University (Natural Science Edition), 2014, 31(2): 85-90. |
杨海霞, 李士美, 李敏, 等. 丛枝菌根真菌对白三叶耐盐性的影响. 青岛农业大学学报(自然科学版), 2014, 31(2): 85-90. | |
48 | Colla G, Rouphael Y, Cardarelli M, et al. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 2008, 44(3): 501-509. |
49 | Wu N. Influence of arbuscular mycorrhizal fungi (AMF) inoculation on salt tolerance of Populus cathayana females and males. Xianyang: Northwest A & F University, 2018. |
吴娜. 丛枝菌根真菌 (AMF) 对青杨雌株和雄株耐盐性影响的研究. 咸阳: 西北农林科技大学, 2018. | |
50 | Analía I, Mariela E, Edgardo O, et al. Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiology Biochemistry, 2007, 45(1): 39-46. |
51 | Ye L. Alieviative effects and its mechanism of exogenous arbuscular mycorrhizal fungi (AMF) on watermelon seedlings under salinity-alkalinity stress. Xianyang: Northwest A & F University, 2019. |
叶林. 丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理. 咸阳: 西北农林科技大学, 2019. | |
52 | Liu Y C, Wang Z, Wang C, et al. Effects of arbuscular mycorrhizal fungi on growth and the physiological characteristics of celery under salt stress. Northern Horticulture, 2019(18): 47-51. |
刘耀臣, 王震, 王策, 等. 丛枝菌根真菌对盐胁迫下芹菜生长和生理指标的影响. 北方园艺, 2019(18): 47-51. | |
53 | Yang H X, Liu R J, Guo S X. Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203. |
杨海霞, 刘润进, 郭绍霞. AM真菌摩西球囊霉对盐胁迫条件下高羊茅生长特性的影响. 草业学报, 2014, 23(4): 195-203. |
[1] | 谢文辉, 黄莉娟, 赵丽丽, 王雷挺, 赵文武. 钙盐胁迫对3份葛藤种质种子萌发及幼苗生理特性的影响[J]. 草业学报, 2022, 31(7): 220-233. |
[2] | 刘亚男, 于人杰, 高燕丽, 康俊梅, 杨青川, 武志海, 王珍. 蒺藜苜蓿膜联蛋白MtANN2基因的表达模式及盐胁迫下的功能分析[J]. 草业学报, 2022, 31(5): 124-134. |
[3] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[4] | 陈倩, 徐晓芸, 汪军成, 姚立蓉, 司二静, 杨轲, 韦晓玲, 马小乐, 李葆春, 尚勋武, 孟亚雄, 王化俊. 基于全长转录组的盐生草WRKY基因家族的鉴定及其盐胁迫响应模式分析[J]. 草业学报, 2022, 31(12): 146-157. |
[5] | 李娜娜, 刘同歌, 黄志慧, 郑宝江, 张玉红. 草本资源植物菥蓂对盐胁迫下生理生态及次生代谢产物响应[J]. 草业学报, 2022, 31(11): 181-190. |
[6] | 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. |
[7] | 陆安桥, 张峰举, 许兴, 王学琴, 姚姗. 盐胁迫对湖南稷子苗期生长及生理特性的影响[J]. 草业学报, 2021, 30(5): 84-93. |
[8] | 孙红, 郑玉龙, 林炎丽, 陈超, 杨富裕. 生物炭、磷及AMF对Cd胁迫下柳枝稷生长及土壤性质的影响[J]. 草业学报, 2021, 30(12): 71-80. |
[9] | 汪芳珍, 杨成行, 何子华, 林子茹, 曾浩源, 马清. 盐处理下旱生植物沙芥蛋白激酶相关基因的差异表达分析[J]. 草业学报, 2021, 30(10): 116-124. |
[10] | 田甜, 王海江, 王金刚, 朱永琪, 史晓艳, 李维弟, 李文瑞玉. 盐胁迫下施加氮素对饲用油菜有机渗透调节物质积累的影响[J]. 草业学报, 2021, 30(10): 125-136. |
[11] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
[12] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[13] | 王苗苗, 周向睿, 梁国玲, 赵桂琴, 焦润安, 柴继宽, 高雪梅, 李娟宁. 5份燕麦材料苗期耐盐性综合评价[J]. 草业学报, 2020, 29(8): 143-154. |
[14] | 贾红梅, 方千, 张秫华, 严铸云, 柳敏. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020, 29(6): 83-92. |
[15] | 赵昕, 吴子龙, 张浩, 杨旭钊, 韩超, 高杰. 峰峰矿区煤矸石山周边植物丛枝菌根真菌的侵染及Cd含量研究[J]. 草业学报, 2020, 29(5): 78-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||