草业学报 ›› 2024, Vol. 33 ›› Issue (1): 207-216.DOI: 10.11686/cyxb2023084
• 研究简报 • 上一篇
丁仁翔(), 刘浩(), 朱科燃, 张雨, 王鑫, 杨蒙, 朱浩铖, 刘光立()
收稿日期:
2023-03-21
修回日期:
2023-04-17
出版日期:
2024-01-20
发布日期:
2023-11-23
通讯作者:
刘光立
作者简介:
E-mail: 395689401@qq.com基金资助:
Ren-xiang DING(), Hao LIU(), Ke-ran ZHU, Yu ZHANG, Xin WANG, Meng YANG, Hao-cheng ZHU, Guang-li LIU()
Received:
2023-03-21
Revised:
2023-04-17
Online:
2024-01-20
Published:
2023-11-23
Contact:
Guang-li LIU
摘要:
为了揭示夹金山3种同域分布绿绒蒿的传粉生态学特点与繁育系统差异,以全缘叶绿绒蒿、川西绿绒蒿、红花绿绒蒿为研究对象,观测植株的花期物候与传粉媒介,并采用联苯胺-过氧化氢法与氯化三苯基四氮唑(TTC)染色法分别检测柱头可授性与花粉活力。结果表明:1)全缘叶绿绒蒿的花期比川西绿绒蒿和红花绿绒蒿提前近1个月,后两者的花期接近,但三者花期均有重叠。2)3种绿绒蒿柱头可授性持续时间均达5 d以上,且第3至4天时可授性最强。3)在散粉后的8 h内,全缘叶绿绒蒿和川西绿绒蒿的花粉活力随时间延长而下降,红花绿绒蒿的花粉活力呈先升高后降低的趋势。4)全缘叶绿绒蒿花粉胚珠比为990±28,川西绿绒蒿为2050±596,两者之间有显著差异(P<0.05);红花绿绒蒿为1380±202,与前两者无显著差异。且3种绿绒蒿均属于兼性异交。5)3种绿绒蒿有着相同的传粉者麻蝇;其中访问全缘叶绿绒蒿的昆虫种类最多;访问红花绿绒蒿的昆虫比较单一,但数量最多;访问川西绿绒蒿的昆虫数量最少。综上,3种绿绒蒿在繁育系统上表现出差异性:全缘叶绿绒蒿花期和柱头可授期最长,柱头可授性最强,授粉昆虫种类最多,弥补了花粉活力衰减快的缺陷;川西绿绒蒿的花粉能长时间维持高活力但传粉昆虫数量最少;红花绿绒蒿的传粉者有独特的寄生性传粉现象,它们在柱头内产卵,并帮助宿主进行种内传粉,确保了传粉的精确性。
丁仁翔, 刘浩, 朱科燃, 张雨, 王鑫, 杨蒙, 朱浩铖, 刘光立. 夹金山3种同域分布绿绒蒿的传粉生态学研究[J]. 草业学报, 2024, 33(1): 207-216.
Ren-xiang DING, Hao LIU, Ke-ran ZHU, Yu ZHANG, Xin WANG, Meng YANG, Hao-cheng ZHU, Guang-li LIU. A study of pollination ecology of three Meconopsis species with sympatric distribution on Jiajin Mountain[J]. Acta Prataculturae Sinica, 2024, 33(1): 207-216.
绿绒蒿种类 Species of Meconopsis | 开花时期 Florescence period | ||
---|---|---|---|
开花前期Early flowering period | 开花中期Mid-flowering period | 开花后期Late flowering period | |
全缘叶绿绒蒿M. integrifolia | ++ | +++ | + |
川西绿绒蒿M. henrici | + | ++ | + |
红花绿绒蒿M. punicea | + | ++ | + |
表1 不同开花时期绿绒蒿柱头可授性
Table 1 Stigma receptivity of Meconopsis in different florescence
绿绒蒿种类 Species of Meconopsis | 开花时期 Florescence period | ||
---|---|---|---|
开花前期Early flowering period | 开花中期Mid-flowering period | 开花后期Late flowering period | |
全缘叶绿绒蒿M. integrifolia | ++ | +++ | + |
川西绿绒蒿M. henrici | + | ++ | + |
红花绿绒蒿M. punicea | + | ++ | + |
绿绒蒿种类 Species of Meconopsis | 开花后时间Time after flowering (d) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
全缘叶绿绒蒿M. integrifolia | + | ++ | +++ | +++ | ++ |
川西绿绒蒿M. henrici | + | + | ++ | + | + |
红花绿绒蒿M. punicea | + | + | ++ | ++ | + |
表2 开花后不同时间绿绒蒿柱头可授性
Table 2 Stigma receptivity of Meconopsis at different time after flowering
绿绒蒿种类 Species of Meconopsis | 开花后时间Time after flowering (d) | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
全缘叶绿绒蒿M. integrifolia | + | ++ | +++ | +++ | ++ |
川西绿绒蒿M. henrici | + | + | ++ | + | + |
红花绿绒蒿M. punicea | + | + | ++ | ++ | + |
图2 3种绿绒蒿的花粉活力随时间的变化不同小写字母表示同种植物不同散粉时间差异显著(P<0.05), 数值为平均值±标准误。Different lowercase letters indicate significant differences among different dispersal time of the same plant species (P<0.05), the value is mean±standard error.
Fig.2 Changes in pollen viablilty of three species of Meconopsis with time
图3 不同种间花粉数、胚珠数及比值不同小写字母表示不同物种间差异显著(P<0.05), 数值为平均值±标准误,下同。Different lowercase letters indicate significant differences among different species (P<0.05), the value is mean±standard error, the same below.
Fig.3 Determination of pollen number, ovule number and ratio among different species
绿绒蒿种类 Species of Meconopsis | 麻蝇 Helicophagellamelanura | 寄蝇 Periscepsiacarbonaria | 黑蜂蚜蝇 Volucella nigricans | 杜鹃三节叶蜂 Arge similes vollenhoven | 熊蜂 Bombus spp. |
---|---|---|---|---|---|
全缘叶绿绒蒿M. integrifolia | 87.50 | 0 | 4.17 | 8.33 | 0 |
川西绿绒蒿M. henrici | 92.86 | 0 | 0 | 0 | 7.14 |
红花绿绒蒿M. punicea | 9.31 | 90.69 | 0 | 0 | 0 |
表3 3种绿绒蒿传粉昆虫访花次数占总访问次数的比例
Table 3 The proportion of the number of flower visits by each floral visitors of three species of Meconopsis (%)
绿绒蒿种类 Species of Meconopsis | 麻蝇 Helicophagellamelanura | 寄蝇 Periscepsiacarbonaria | 黑蜂蚜蝇 Volucella nigricans | 杜鹃三节叶蜂 Arge similes vollenhoven | 熊蜂 Bombus spp. |
---|---|---|---|---|---|
全缘叶绿绒蒿M. integrifolia | 87.50 | 0 | 4.17 | 8.33 | 0 |
川西绿绒蒿M. henrici | 92.86 | 0 | 0 | 0 | 7.14 |
红花绿绒蒿M. punicea | 9.31 | 90.69 | 0 | 0 | 0 |
1 | Ju T, Han Z T, Ruhsam M, et al. Reproduction and genetic diversity of Juniperus squamata along an elevational gradient in the Hengduan Mountains. Plant Diversity, 2021, 44(4): 369-376. |
2 | Zhang Y Z, Qian L S, Spalink D, et al. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Diversity, 2020, 43(3): 181-191. |
3 | Gao Q B, Li Y, Gengji Z M, et al. Population genetic differentiation and taxonomy of three closely related species of Saxifraga (Saxifragaceae) from southern Tibet and the Hengduan Mountains. Frontiers in Plant Science, 2017, 8: 1325. |
4 | Arroyo M T K, Tamburrino Í, Pliscoff P, et al. Flowering phenology adjustment and flower longevity in a south American alpine species. Plants, 2021, 10(3): 461. |
5 | Gupta R, Sutradhar H, Chakrabarty S K, et al. Stigmatic receptivity determines the seed set in Indian mustard, rice and wheat crops. Communicative & Integrative Biology, 2015, 8(5): e1042630. |
6 | Lozada-Gobilard S, Weigend M, Fischer E, et al. Breeding systems in Balsaminaceae in relation to pollen/ovule ratio, pollination syndromes, life history and climate zone. Plant Biology, 2019, 21(1): 157-166. |
7 | Tian H, Harder L D, Wang A Y, et al. Habitat effects on reproductive phenotype, pollinator behavior, fecundity, and mating outcomes of a bumble bee-pollinated herb. American Journal of Botany, 2022, 109(3): 470-485. |
8 | Christopher D A, Karron J D, Semski W R, et al. Selfing rates vary with floral display, pollinator visitation and plant density in natural populations of Mimulus ringens. Journal of Evolutionary Biology, 2021, 34(5): 803-815. |
9 | Cheptou P O. Does the evolution of self-fertilization rescue populations or increase the risk of extinction? Annals of Botany, 2019, 123(2): 337-345. |
10 | Takebayashi N, Morrell P L. Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. American Journal of Botany, 2001, 88(7): 1143-1150. |
11 | Dötterl S, Glück U, Jürgens A, et al. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS One, 2014, 9(3): e93421. |
12 | Gou T X, Jiang X H, Liu Y Y, et al. Distribution and exploitation significance of Meconpsis Vig.in Garzi Tibetan Autonomous Prefecture. Sichuan Forestry Exploration and Design, 2021(1): 22-24. |
苟天雄, 姜欣华, 刘燕云, 等. 浅议甘孜州绿绒蒿属植物资源分布及开发意义. 四川林勘设计, 2021(1): 22-24. | |
13 | Li X, Tan W, Sun J, et al. Comparison of four complete chloroplast genomes of medicinal and ornamental Meconopsis species: genome organization and species discrimination. Scientific Reports, 2019, 9(1): 10567. |
14 | Xu B, Kang H B, Luo S X, et al. Complete chloroplast genome of the Meconopsis quintuplinervia (Papaveraceae), a traditional medicine of Tibetan. Mitochondrial DNA Part B (Resources), 2019, 4(2): 2335-2336. |
15 | Ding C B, Li Q, Li Y, et al. Pollen viability and stigma receptivity of nine species and five variety in Paris. Acta Prataculturae Sinica, 2009, 18(4): 61-66. |
丁春邦, 李强, 李燕, 等. 重楼属9种5变种花粉活力与柱头可授性特性研究. 草业学报, 2009, 18(4): 61-66. | |
16 | Liang L, Kong D Z, Liu Z X, et al. Comparative analysis of detection methods for lotus pollen viability. Jiangsu Agricultural Sciences, 2022, 50(2): 131-136. |
梁露, 孔德政, 刘卓星, 等. 荷花花粉活力的检测方法比较分析. 江苏农业科学, 2022, 50(2): 131-136. | |
17 | Cruden R W. Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution, 1977, 31(1): 32-46. |
18 | Bie P F, Tang T, Hu J Y, et al. Flowering phenology and breeding system of an endangered and rare species Urophysa rockii (Ranunculaceae). Acta Ecologica Sinica, 2018, 38(11): 3899-3908. |
别鹏飞, 唐婷, 胡进耀, 等. 珍稀濒危植物距瓣尾囊草(Urophysa rochkii)的开花物候和繁育系统特性. 生态学报, 2018, 38(11): 3899-3908. | |
19 | Wang H, Li X X. Differentiation in breeding system and pollination of three sympatric Corydalis species. Plant Science Journal, 2017, 35(2): 186-193. |
王慧, 李肖夏. 同域分布的紫堇属三种植物的繁育系统和传粉差异. 植物科学学报, 2017, 35(2): 186-193. | |
20 | Zhao J H, Li Q F, Na R T Y, et al. Study on pollen viability and stigma receptivity of three species of Allium. Pratacultural Science, 2010, 27(4): 93-96. |
赵金花, 李青丰, 那仁图雅, 等. 3种野生葱属植物花粉活力和柱头可授性研究. 草业科学, 2010, 27(4): 93-96. | |
21 | Hu S Y. Experimental methods in plant embryology (Ⅰ) determination of pollen viability. Chinese Bulletin of Botany, 1993, 10(2): 60-62. |
胡适宜. 植物胚胎学实验方法(一)花粉生活力的测定. 植物学通报, 1993, 10(2): 60-62. | |
22 | Wu Y, Liu Y R, Peng H, et al. Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes. Chinese Journal of Plant Ecology, 2015, 39(1): 1-13. |
吴云, 刘玉蓉, 彭瀚, 等. 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究. 植物生态学报, 2015, 39(1): 1-13. | |
23 | Moisan-Deserres J, Girard M, Chagnon M, et al. Pollen loads and specificity of native pollinators of lowbush blueberry. Journal of Economic Entomology, 2014, 107(3): 1156-1162. |
24 | Hong Y, Fang H T, Na R. Pollen viability and stigma receptivity of Prunus mongolica Maxim. Guihaia, 2006, 26(6): 589-591. |
红雨, 方海涛, 那仁. 濒危植物蒙古扁桃花粉活力和柱头可授性研究. 广西植物, 2006, 26(6): 589-591. | |
25 | Wu Y M, Shen X L, Tong L, et al. Reproductive biology of an endangered lithophytic shrub and implications for its conservation. BMC Plant Biology, 2022, 22(1): 80. |
26 | Etcheverry A V, Alemán M M, Figueroa-Fleming T, et al. Pollen∶ovule ratio and its relationship with other floral traits in Papilionoideae (Leguminosae): an evaluation with Argentine species. Plant Biology, 2012, 14(1): 171-178. |
27 | Zhang Y, Ye Q G. Breeding system of the endangered species Psilopeganum sinense and its pollination process in a botanical garden. Plant Science Journal, 2011, 29(5): 599-606. |
张洋, 叶其刚. 濒危植物裸芸香的繁育系统及在植物园迁地保护环境下的传粉研究. 植物科学学报, 2011, 29(5): 599-606. | |
28 | Goodwillie C, Kalisz S, Eckert C. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology Evolution and Systematics, 2005, 36(1): 47-79. |
29 | Martarello N S, Gruchowski-Woitowicz F C, Agostini K. Pollinator efficacy in yellow passion fruit (Passiflora edulis f. flavicarpa Deg., Passifloraceae). Neotropical Entomology, 2021, 50(3): 349-357. |
30 | Hou Q Z, Duan Y W, Si Q W, et al. Pollination ecology of Gentiana lawrencei var. farreri, a late-flowering Qinghai-Tibet Plateau species. Chinese Journal of Plant Ecology, 2009, 33(6): 1156-1164. |
侯勤正, 段元文, 司庆文, 等. 青藏高原晚期开花植物线叶龙胆的传粉生态学. 植物生态学报, 2009, 33(6): 1156-1164. | |
31 | Trunschke J, Lunau K, Pyke G H, et al. Flower color evolution and the evidence of pollinator-mediated selection. Frontiers in Plant Science, 2021, 12: 617851. |
32 | Liu M Y, Liu G L, Kang Y X, et al. Responses of leaf morphological and anatomical structure to elevation in an alpine plant Meconopsis integrifolia. Chinese Journal of Ecology, 2018, 37(1): 35-42. |
刘梦颖, 刘光立, 康永祥, 等. 高山植物全缘叶绿绒蒿叶片形态及解剖结构对海拔的响应. 生态学杂志, 2018, 37(1): 35-42. | |
33 | Zhong T, Duan X Y, Jiang Y Y, et al. Floral heat source and temperature regulation function in Meconopsis integrifolia. Guihaia, 2020, 40(9): 1315-1322. |
钟涛, 段旭宇, 姜银银, 等. 全缘叶绿绒蒿的花内热量来源和温度调节功能. 广西植物, 2020, 40(9): 1315-1322. | |
34 | Peng D L, Zhang Z Q, Niu Y, et al. Advances in the studies of reproductive strategies of alpine plants. Biodiversity Science, 2012, 20(3): 286-299. |
彭德力, 张志强, 牛洋, 等. 高山植物繁殖策略的研究进展. 生物多样性, 2012, 20(3): 286-299. | |
35 | Chen J Y, Chen X L, Guo N N, et al. New discovery in pattern on nutrient absorption and vegetative propagation of Cistanche lanzhouensis. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(3): 192-197, 204. |
陈金元, 陈学林, 郭楠楠, 等. 兰州肉苁蓉营养吸收和营养繁殖方式的新发现. 西北农林科技大学学报(自然科学版), 2017, 45(3): 192-197, 204. | |
36 | Ke Y Z, Luo J F, Zhang L, et al. Leontopodium nanum reproductive allocation and leaf functional traits in degraded grassland of Qinghai-Tibetan Plateau. Journal of West China Forestry Science, 2019, 48(2): 45-51. |
柯裕州, 罗久富, 张利, 等. 青藏高原草地退化过程中矮火绒草繁殖分配及叶功能性状差异. 西部林业科学, 2019, 48(2): 45-51. | |
37 | Ma W M, Wang Y F, Zhao X W, et al. Altitude differences in reproductive characteristics and resource allocation of Saussurea wellbyi. Bulletin of Botanical Research, 2019, 39(5): 707-715. |
马文梅, 王一峰, 赵夏纬, 等. 羌塘雪兔子繁殖特征及资源分配的海拔差异. 植物研究, 2019, 39(5): 707-715. | |
38 | Yang Y J, Wang Y F, Qi R L, et al. Discrepancy caused by various altitudes in both floral traits and reproductive allocation of Saussurea tangutica. Guihaia, 2018, 38(2): 159-168. |
杨亚军, 王一峰, 祁如林, 等. 唐古特雪莲花部特征及生殖分配的海拔差异. 广西植物, 2018, 38(2): 159-168. | |
39 | Meng L H, Wang Z K, Liu C Y, et al. Reproductive allocation of an alpine perennial, Polygonum macrophyllum. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(6): 1157-1163. |
孟丽华, 王政昆, 刘春燕, 等. 高山植物圆穗蓼的繁殖资源分配. 西北植物学报, 2011, 31(6): 1157-1163. | |
40 | Zhang N W, Wu Y, Liu G L. Variations of reproductive allocation of Meconopsis integrifolia at different altitudes. Northern Horticulture, 2016(18): 52-56. |
张霓雯, 吴云, 刘光立. 不同海拔全缘叶绿绒蒿繁殖分配的差异. 北方园艺, 2016(18): 52-56. |
[1] | 张永超, 魏小星, 梁国玲, 秦燕, 刘文辉, 贾志锋, 刘勇, 马祥. 老芒麦衰老过程形态特征变化规律及对养分添加的响应[J]. 草业学报, 2022, 31(6): 101-111. |
[2] | 陈垣, 徐博琼, 郭凤霞, 白刚, 张荩凤, 张勇. 暗紫贝母花器官特征及有性繁育系统研究[J]. 草业学报, 2017, 26(1): 90-98. |
[3] | 苏芸芸, 王康才, 薛启. 不同产地藿香花粉活力与柱头可授性研究[J]. 草业学报, 2016, 25(9): 189-196. |
[4] | 郭红超,严成,魏岩. 木地肤的开花动态与花粉活力及柱头可授性研究[J]. 草业学报, 2014, 23(4): 87-93. |
[5] | 丁春邦,李强,李燕,张利,杨瑞武,周永红. 重楼属9种5变种花粉活力与柱头可授性特性研究[J]. 草业学报, 2009, 18(4): 61-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||