欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2024, Vol. 33 ›› Issue (8): 112-121.DOI: 10.11686/cyxb2023358

• 研究论文 • 上一篇    

基于卷积神经网络的列当种子发芽识别方法

沈祺嵘(), 严俊(), 叶晓馨, 桑玉莹, 单启玲, 张琪藤   

  1. 安徽大学资源与环境工程学院,安徽 合肥 230601
  • 收稿日期:2023-09-25 修回日期:2023-11-08 出版日期:2024-08-20 发布日期:2024-05-13
  • 通讯作者: 严俊
  • 作者简介:E-mail: jun.yan@ahu.edu.cn
    沈祺嵘(1998-),男,浙江嘉兴人,在读硕士。E-mail: x21301073@stu.ahu.edu.cn
  • 基金资助:
    国家自然科学基金(42104036);安徽省高校自然科学研究项目重点项目(KJ2019A0024)

A broomrape seed germination recognition method based on convolutional neural networks

Qi-rong SHEN(), Jun YAN(), Xiao-xin YE, Yu-ying SANG, Qi-ling SHAN, Qi-teng ZHANG   

  1. School of Resources and Environmental Engineering,Anhui University,Hefei 230601,China
  • Received:2023-09-25 Revised:2023-11-08 Online:2024-08-20 Published:2024-05-13
  • Contact: Jun YAN

摘要:

列当是一种极具破坏力的寄生性杂草,目前难以用常规方法根除。通过使用发芽刺激物可以诱导列当“自杀性萌发”,因此识别特定发芽刺激物下的种子发芽率至关重要。针对显微镜下人眼视觉对列当种子发芽判断标准不统一和耗时耗力等问题,本研究提出一种基于卷积神经网络的列当种子发芽识别算法。首先,培育列当种子并采用显微镜采集发芽和未发芽的种子构建列当图像库;然后,通过搭建卷积神经网络来提取列当图像的特征实现种子发芽识别,通过试验对比优化超参数,得到适合列当种子识别的OB-Net模型;最后,通过试验图像验证,本研究模型可达到95.2%的识别准确率;与现有主流网络模型进行对比证明了构建的OB-Net模型在列当种子识别方面具有最高的精度和较快检测速度。本研究的列当种子发芽识别方法可以为相关发芽刺激物的研究提供有效的理论支撑。

关键词: 列当种子, 发芽识别, 卷积神经网络, 特征提取

Abstract:

Broomrape (Orobanche spp.) is an exceedingly pernicious parasitic weed that is difficult to eradicate using conventional methods. Inducing “suicidal germination” in broomrape seeds through the application of germination stimulants is a crucial control method. However, the current method to evaluate broomrape seed germination based on human visual inspection using a microscope is time-consuming and produces inconsistent results. To address these issues, we propose a broomrape seed germination recognition algorithm based on convolutional neural networks. First, we cultivated broomrape seeds and collected images of germinated and ungerminated seeds under a microscope to construct a broomrape image library. Then, we developed a convolutional neural network, named OB-Net, to extract features from broomrape images and recognize seed germination. Through comparative analysis and optimization, we carefully selected the hyperparameters of the OB-Net model. Our experimental results demonstrated that the model achieved a recognition accuracy of 95.2%. Comparative analysis with existing mainstream network models confirmed that the proposed OB-Net model exhibited the highest accuracy and fastest detection speed in recognizing germinated broomrape seeds. The broomrape seed germination recognition method proposed in this study offers effective theoretical support for further research on other seeds and germination stimulants.

Key words: broomrape seeds, germination recognition, convolutional neural networks, feature extraction