草业学报 ›› 2024, Vol. 33 ›› Issue (8): 1-14.DOI: 10.11686/cyxb2023342
• 研究论文 •
曹颖1(), 聂明鹤1, 沈艳1,2,3,4(), 胡艳5, 马登宝5, 李东5, 候腾思1, 方鹏1, 王学琴1
收稿日期:
2023-09-14
修回日期:
2023-10-11
出版日期:
2024-08-20
发布日期:
2024-05-13
通讯作者:
沈艳
作者简介:
E-mail: nxshenyan@163. com基金资助:
Ying CAO1(), Ming-he NIE1, Yan SHEN1,2,3,4(), Yan HU5, Deng-bao MA5, Dong LI5, Teng-si HOU1, Peng FANG1, Xue-qin WANG1
Received:
2023-09-14
Revised:
2023-10-11
Online:
2024-08-20
Published:
2024-05-13
Contact:
Yan SHEN
摘要:
为深入了解荒漠草原不同退化阶段植被与土壤变化,探究荒漠草原不同退化阶段土壤性质与植被特征的关系,本研究以宁夏干旱风沙区荒漠草原为对象,比较了未退化、轻度退化、中度退化和重度退化4个退化阶段下草地植被和土壤性状,分析了草地退化过程中植被与土壤的关系。结果表明:随草地退化程度增加,草地优势种由多年生豆科、禾本科逐渐转变为一年生杂类草;不同草地植物功能群盖度、高度和地上生物量随着退化加剧变化并不相同(P<0.05);Shannon-Wiener多样性指数、Simpson优势度指数和Pielou均匀度指数呈下降趋势;土壤有机质、全碳、全氮、速效氮、速效磷和黏粒含量显著降低,但容重显著增加。冗余分析发现,荒漠草原植被特征与土壤因子密切相关,不同退化阶段影响草地植被特征的土壤性质不同。未退化阶段,草地的植被特征受全碳含量极显著影响,中度退化阶段,草地的植被特征受容重含量极显著影响,重度退化阶段,草地的植被特征受速效氮含量极显著影响(P<0.01)。通过改善植被进而影响土壤或者补充土壤养分可能是一个有效的草地恢复策略。
曹颖, 聂明鹤, 沈艳, 胡艳, 马登宝, 李东, 候腾思, 方鹏, 王学琴. 宁夏干旱风沙区荒漠草原不同退化阶段植被土壤变化特征及其相关性[J]. 草业学报, 2024, 33(8): 1-14.
Ying CAO, Ming-he NIE, Yan SHEN, Yan HU, Deng-bao MA, Dong LI, Teng-si HOU, Peng FANG, Xue-qin WANG. Changes in vegetation and soil characteristics and their correlations in grasslands at different stages of degradation on the desert steppe in an arid wind-sandy area of Ningxia[J]. Acta Prataculturae Sinica, 2024, 33(8): 1-14.
项目 Item | 未退化 Non-degradation | 轻度退化 Light degradation | 中度退化 Moderate degradation | 重度退化 Heavy degradation |
---|---|---|---|---|
海拔Altitude (m) | 1391.80~1528.00 | 1334.03~1527.00 | 1375.20~1504.50 | 1312.90~1529.10 |
样地Sample | A1、A2、A7、A16、A31、A34 | A3、A4、A5、A6、A14、A15、A19、A25、A29、A30、A35、A37 | A11、A12、A13、A20、A21、A22、A23、A24、A26、A27、A28、A36 | A8、A9、A10、A17、A18、A32、A33 |
盖度Coverage (%) | 87.29±2.66 | 78.61±1.66 | 46.16±2.94 | 23.50±4.78 |
AGB (g·m-2) | 179.44±7.61 | 76.24±5.39 | 39.14±3.06 | 18.68±2.21 |
Ratio (%) | 78.66±3.43 | 51.14±4.64 | 28.68±1.91 | 5.85±1.12 |
优势植物Dominant plants | 牛枝子L. potaninii,苦豆子S. alopecuroides,赖草L. secalinus | 短花针茅S. breviflora,猪毛蒿Artemisia scoparia,赖草L. secalinus | 白草P. flaccidum,虫实Corispermum hyssopifolium | 虫实C. hyssopifolium,雾冰藜Grubovia dasyphylla |
表1 荒漠草原不同退化阶段样地概况
Table 1 Survey of desert steppe sample in different degradation stages
项目 Item | 未退化 Non-degradation | 轻度退化 Light degradation | 中度退化 Moderate degradation | 重度退化 Heavy degradation |
---|---|---|---|---|
海拔Altitude (m) | 1391.80~1528.00 | 1334.03~1527.00 | 1375.20~1504.50 | 1312.90~1529.10 |
样地Sample | A1、A2、A7、A16、A31、A34 | A3、A4、A5、A6、A14、A15、A19、A25、A29、A30、A35、A37 | A11、A12、A13、A20、A21、A22、A23、A24、A26、A27、A28、A36 | A8、A9、A10、A17、A18、A32、A33 |
盖度Coverage (%) | 87.29±2.66 | 78.61±1.66 | 46.16±2.94 | 23.50±4.78 |
AGB (g·m-2) | 179.44±7.61 | 76.24±5.39 | 39.14±3.06 | 18.68±2.21 |
Ratio (%) | 78.66±3.43 | 51.14±4.64 | 28.68±1.91 | 5.85±1.12 |
优势植物Dominant plants | 牛枝子L. potaninii,苦豆子S. alopecuroides,赖草L. secalinus | 短花针茅S. breviflora,猪毛蒿Artemisia scoparia,赖草L. secalinus | 白草P. flaccidum,虫实Corispermum hyssopifolium | 虫实C. hyssopifolium,雾冰藜Grubovia dasyphylla |
物种 Species | 科名 Family | 生活型 Habit | 退化阶段Degradation stage | |||
---|---|---|---|---|---|---|
ND | LD | MD | HD | |||
赖草L. secalinus | 禾本科Gramineae | 多年生草本 Perennial herb | 1.40 | 1.91 | 0.97 | 1.36 |
白草P. flaccidum | 禾本科Gramineae | 多年生草本Perennial herb | 0.73 | 1.55 | 2.34 | 2.19 |
芨芨草Neotrinia splendens | 禾本科Gramineae | 多年生草本Perennial herb | 0.03 | — | — | — |
糙隐子草Cleistogenes squarrosa | 禾本科Gramineae | 多年生草本Perennial herb | 0.29 | 0.74 | 0.43 | 0.01 |
沙芦草Agropyron mongolicum | 禾本科Gramineae | 多年生草本Perennial herb | 0.14 | 0.40 | — | 0.50 |
短花针茅S. breviflora | 禾本科Gramineae | 多年生草本Perennial herb | 0.44 | 2.06 | 0.62 | — |
锋芒草Tragus mongolorum | 禾本科Gramineae | 一年生草本Annual herb | — | — | 0.21 | 0.21 |
狗尾草Setaira viridis | 禾本科Gramineae | 一年生草本Annual herb | 0.36 | 0.59 | 0.33 | 0.70 |
画眉草Eragrostis pilosa | 禾本科Gramineae | 一年生草本Annual herb | 0.29 | 0.06 | 0.01 | — |
苦豆子S. alopecuroides | 豆科Leguminosae | 半灌木Subshrub | 1.14 | 0.66 | 1.44 | 0.35 |
牛枝子L. potaninii | 豆科Leguminosae | 半灌木Subshrub | 1.23 | 1.78 | 0.65 | 0.30 |
猫头刺Oxytropis aciphylla | 豆科Leguminosae | 半灌木Subshrub | 0.01 | 0.68 | 0.14 | — |
米口袋Gueldenstaedtia verna | 豆科Leguminosae | 多年生草本Perennial herb | 0.14 | 0.07 | 0.09 | 0.14 |
披针叶野决明Thermopsis lanceolata | 豆科Leguminosae | 多年生草本Perennial herb | 0.98 | 0.04 | 0.06 | 0.02 |
砂珍棘豆Oxytropis racemosa | 豆科Leguminosae | 多年生草本Perennial herb | 0.07 | 0.40 | 0.32 | 0.03 |
二色棘豆Oxytropis bicolor | 豆科Leguminosae | 多年生草本Perennial herb | 0.17 | 0.58 | 0.01 | — |
甘草Glycyrrhiza uralensis | 豆科Leguminosae | 多年生草本Perennial herb | 0.90 | 0.91 | 0.03 | 0.31 |
草木樨状黄芪Astragalus melilotoides | 豆科Leguminosae | 多年生草本Perennial herb | 0.14 | 0.02 | — | 0.13 |
乳浆大戟Euphorbia esula | 大戟科Euphorbiaceae | 多年生草本Perennial herb | 0.10 | 0.13 | 0.11 | 0.04 |
地锦Euphorbia humifusa | 大戟科Euphorbiaceae | 一年生草本Annual herb | — | 0.47 | 0.05 | 0.51 |
黑沙蒿Artemisia ordosica | 菊科Asteraceae | 半灌木Subshrub | — | — | 0.52 | — |
叉枝鸦葱Lipschitzia divaricata | 菊科Asteraceae | 多年生草本Perennial herb | 0.09 | 0.03 | 0.01 | 0.87 |
蒲公英Taraxacum mongolicum | 菊科Asteraceae | 多年生草本Perennial herb | 0.10 | — | — | 0.12 |
中华苦荬菜Ixeris chinensis | 菊科Asteraceae | 多年生草本Perennial herb | 0.10 | 0.08 | 0.03 | 1.26 |
阿尔泰狗娃花Aster altaicus | 菊科Asteraceae | 多年生草本Perennial herb | 0.06 | 0.52 | 0.02 | 0.03 |
砂蓝刺头Echinops gmelinii | 菊科Asteraceae | 一年生草本Annual herb | — | — | 0.43 | 0.07 |
猪毛蒿A. scoparia | 菊科Asteraceae | 一年生草本Annual herb | 0.91 | 1.98 | 0.07 | 1.52 |
雾冰藜G. dasyphylla | 苋科Amaranthaceae | 一年生草本Annual herb | 0.05 | 0.12 | 0.01 | 2.73 |
灰绿藜Oxybasis glauca | 苋科Amaranthaceae | 一年生草本Annual herb | 0.16 | 0.09 | — | — |
虫实C. hyssopifolium | 苋科Amaranthaceae | 一年生草本Annual herb | 0.98 | 1.20 | 2.18 | 3.97 |
猪毛菜Kali collinum | 苋科Amaranthaceae | 一年生草本Annual herb | 0.42 | 1.02 | 0.53 | 0.55 |
蒺藜Tribulus terrestris | 蒺藜科Zygophyllaceae | 一年生草本Annual herb | 0.15 | 0.39 | 0.51 | 0.55 |
地梢瓜Cynanchum thesioides | 夹竹桃科Apocynaceae | 半灌木Subshrub | 0.14 | — | — | — |
华北白前Vincetoxicum mongolicum | 夹竹桃科Apocynaceae | 半灌木Subshrub | — | 0.21 | 0.40 | 0.33 |
田旋花Convolvulus arvensis | 旋花科Convolvulaceae | 多年生草本Perennial herb | 0.01 | 0.07 | 0.13 | — |
银灰旋花Convolvulus ammannii | 旋花科Convolvulaceae | 多年生草本Perennial herb | 0.17 | 0.10 | 0.21 | 0.10 |
远志Polygala tenuifolia | 远志科Polygalaceae | 多年生草本Perennial herb | 0.26 | 0.10 | — | — |
二裂委陵菜Sibbaldianthe bifurca | 蔷薇科Rosaceae | 多年生草本Perennial herb | — | 0.04 | 0.01 | — |
蚓果芥Braya humilis | 十字花科Brassicaceae | 多年生草本Perennial herb | 0.01 | 0.03 | 0.11 | — |
骆驼蓬Peganum harmala | 白刺科Nitrariaceae | 多年生草本Perennial herb | 0.11 | 0.07 | 0.50 | 2.07 |
二色补血草Limonium bicolor | 白花丹科Plumbaginaceae | 多年生草本Perennial herb | 0.01 | — | — | — |
黄花补血草Limonium aureum | 白花丹科Plumbaginaceae | 多年生草本Perennial herb | 0.04 | — | — | — |
角蒿Incarvillea sinensis | 紫葳科Bignoniaceae | 一年生草本Annual herb | — | — | 0.02 | 0.04 |
表2 不同退化阶段下草地的植物物种组成及重要值
Table 2 Plant species composition and important values of grassland under different degradation stages
物种 Species | 科名 Family | 生活型 Habit | 退化阶段Degradation stage | |||
---|---|---|---|---|---|---|
ND | LD | MD | HD | |||
赖草L. secalinus | 禾本科Gramineae | 多年生草本 Perennial herb | 1.40 | 1.91 | 0.97 | 1.36 |
白草P. flaccidum | 禾本科Gramineae | 多年生草本Perennial herb | 0.73 | 1.55 | 2.34 | 2.19 |
芨芨草Neotrinia splendens | 禾本科Gramineae | 多年生草本Perennial herb | 0.03 | — | — | — |
糙隐子草Cleistogenes squarrosa | 禾本科Gramineae | 多年生草本Perennial herb | 0.29 | 0.74 | 0.43 | 0.01 |
沙芦草Agropyron mongolicum | 禾本科Gramineae | 多年生草本Perennial herb | 0.14 | 0.40 | — | 0.50 |
短花针茅S. breviflora | 禾本科Gramineae | 多年生草本Perennial herb | 0.44 | 2.06 | 0.62 | — |
锋芒草Tragus mongolorum | 禾本科Gramineae | 一年生草本Annual herb | — | — | 0.21 | 0.21 |
狗尾草Setaira viridis | 禾本科Gramineae | 一年生草本Annual herb | 0.36 | 0.59 | 0.33 | 0.70 |
画眉草Eragrostis pilosa | 禾本科Gramineae | 一年生草本Annual herb | 0.29 | 0.06 | 0.01 | — |
苦豆子S. alopecuroides | 豆科Leguminosae | 半灌木Subshrub | 1.14 | 0.66 | 1.44 | 0.35 |
牛枝子L. potaninii | 豆科Leguminosae | 半灌木Subshrub | 1.23 | 1.78 | 0.65 | 0.30 |
猫头刺Oxytropis aciphylla | 豆科Leguminosae | 半灌木Subshrub | 0.01 | 0.68 | 0.14 | — |
米口袋Gueldenstaedtia verna | 豆科Leguminosae | 多年生草本Perennial herb | 0.14 | 0.07 | 0.09 | 0.14 |
披针叶野决明Thermopsis lanceolata | 豆科Leguminosae | 多年生草本Perennial herb | 0.98 | 0.04 | 0.06 | 0.02 |
砂珍棘豆Oxytropis racemosa | 豆科Leguminosae | 多年生草本Perennial herb | 0.07 | 0.40 | 0.32 | 0.03 |
二色棘豆Oxytropis bicolor | 豆科Leguminosae | 多年生草本Perennial herb | 0.17 | 0.58 | 0.01 | — |
甘草Glycyrrhiza uralensis | 豆科Leguminosae | 多年生草本Perennial herb | 0.90 | 0.91 | 0.03 | 0.31 |
草木樨状黄芪Astragalus melilotoides | 豆科Leguminosae | 多年生草本Perennial herb | 0.14 | 0.02 | — | 0.13 |
乳浆大戟Euphorbia esula | 大戟科Euphorbiaceae | 多年生草本Perennial herb | 0.10 | 0.13 | 0.11 | 0.04 |
地锦Euphorbia humifusa | 大戟科Euphorbiaceae | 一年生草本Annual herb | — | 0.47 | 0.05 | 0.51 |
黑沙蒿Artemisia ordosica | 菊科Asteraceae | 半灌木Subshrub | — | — | 0.52 | — |
叉枝鸦葱Lipschitzia divaricata | 菊科Asteraceae | 多年生草本Perennial herb | 0.09 | 0.03 | 0.01 | 0.87 |
蒲公英Taraxacum mongolicum | 菊科Asteraceae | 多年生草本Perennial herb | 0.10 | — | — | 0.12 |
中华苦荬菜Ixeris chinensis | 菊科Asteraceae | 多年生草本Perennial herb | 0.10 | 0.08 | 0.03 | 1.26 |
阿尔泰狗娃花Aster altaicus | 菊科Asteraceae | 多年生草本Perennial herb | 0.06 | 0.52 | 0.02 | 0.03 |
砂蓝刺头Echinops gmelinii | 菊科Asteraceae | 一年生草本Annual herb | — | — | 0.43 | 0.07 |
猪毛蒿A. scoparia | 菊科Asteraceae | 一年生草本Annual herb | 0.91 | 1.98 | 0.07 | 1.52 |
雾冰藜G. dasyphylla | 苋科Amaranthaceae | 一年生草本Annual herb | 0.05 | 0.12 | 0.01 | 2.73 |
灰绿藜Oxybasis glauca | 苋科Amaranthaceae | 一年生草本Annual herb | 0.16 | 0.09 | — | — |
虫实C. hyssopifolium | 苋科Amaranthaceae | 一年生草本Annual herb | 0.98 | 1.20 | 2.18 | 3.97 |
猪毛菜Kali collinum | 苋科Amaranthaceae | 一年生草本Annual herb | 0.42 | 1.02 | 0.53 | 0.55 |
蒺藜Tribulus terrestris | 蒺藜科Zygophyllaceae | 一年生草本Annual herb | 0.15 | 0.39 | 0.51 | 0.55 |
地梢瓜Cynanchum thesioides | 夹竹桃科Apocynaceae | 半灌木Subshrub | 0.14 | — | — | — |
华北白前Vincetoxicum mongolicum | 夹竹桃科Apocynaceae | 半灌木Subshrub | — | 0.21 | 0.40 | 0.33 |
田旋花Convolvulus arvensis | 旋花科Convolvulaceae | 多年生草本Perennial herb | 0.01 | 0.07 | 0.13 | — |
银灰旋花Convolvulus ammannii | 旋花科Convolvulaceae | 多年生草本Perennial herb | 0.17 | 0.10 | 0.21 | 0.10 |
远志Polygala tenuifolia | 远志科Polygalaceae | 多年生草本Perennial herb | 0.26 | 0.10 | — | — |
二裂委陵菜Sibbaldianthe bifurca | 蔷薇科Rosaceae | 多年生草本Perennial herb | — | 0.04 | 0.01 | — |
蚓果芥Braya humilis | 十字花科Brassicaceae | 多年生草本Perennial herb | 0.01 | 0.03 | 0.11 | — |
骆驼蓬Peganum harmala | 白刺科Nitrariaceae | 多年生草本Perennial herb | 0.11 | 0.07 | 0.50 | 2.07 |
二色补血草Limonium bicolor | 白花丹科Plumbaginaceae | 多年生草本Perennial herb | 0.01 | — | — | — |
黄花补血草Limonium aureum | 白花丹科Plumbaginaceae | 多年生草本Perennial herb | 0.04 | — | — | — |
角蒿Incarvillea sinensis | 紫葳科Bignoniaceae | 一年生草本Annual herb | — | — | 0.02 | 0.04 |
图2 不同退化阶段下各功能群植物重要值比例ND: 未退化Non-degradation; LD: 轻度退化Light degradation; MD: 中度退化Moderate degradation; HD: 重度退化Heavy degradation.下同The same below.
Fig.2 The proportion of important value of each functional group in different degradation stage
图3 不同退化草地不同功能群植被群落特征不同小写字母表示同一功能群不同退化阶段间差异显著(P<0.05)。The lowercase letters indicate the significant differences among of different degradation stages in the same functional group (P<0.05).
Fig.3 Vegetation community characteristics of different functional groups in different degradation grasslands
图4 不同退化阶段草地群落物种多样性H: Shannon-Wiener多样性指数Shannon-Wiener diversity index; E: Pielou均匀度指数Pielou evenness index; D: Simpson优势度指数Simpson dominance index; 不同小写字母表示同一指标不同退化阶段间差异显著(P<0.05)The lowercase letters indicate the significant differences among different degradation stage in the same index (P<0.05).
Fig.4 Species diversity of grassland community at different degradation stages
图5 不同土层不同退化阶段下草地土壤物理性质不同小写字母表示同一土层不同退化阶段间差异显著(P<0.05),不同大写字母表示同一退化阶段不同土层之间差异显著(P<0.05)。下同。The lowercase letters indicate the significant difference among different degradation stages in the same soil layer (P<0.05), and the uppercase letters indicate the significant differences among different soil layers with the same degradation stage (P<0.05). The same below.
Fig.5 Physical properties of grassland soil under different soil layers and different degradation stages
图7 植被群落特征与土壤性质RDA二维排序VC: 植被盖度Vegetation coverage; VH: 植被高度Vegetation height; AGB: 地上生物量Aboveground biomass; SW: 土壤含水量Soil water content; BD: 容重Bulk density; Clay: 黏粒; Silt: 粉粒; Sand: 砂粒; SOM: 土壤有机质Soil organic matter; TC: 全碳Total carbon; TN: 全氮Total nitrogen; AN: 速效氮Available nitrogen; AP: 速效磷Available phosphorus; AK: 速效钾Available potassium.图中红色箭头代表土壤理化性质,蓝色箭头代表植物群落特征,线段长短表示植物群落特征与土壤性质关系的大小。 In the Figure, the red arrow represents the physical and chemical properties of the soil, the blue arrow represents the characteristics of the plant community, and the length of the line segment indicates the relationship between the characteristics of the plant community and the properties of the soil.下同。 The same below.
Fig.7 RDA two-dimensional ordination of vegetation community characteristics and soil properties
图8 不同退化阶段植被群落特征与土壤性质RDA二维排序
Fig.8 RDA two-dimensional ordination of vegetation community characteristics and soil properties at different degradation stages
退化阶段 Degradation stages | 土壤性质 Soil properties | 解释率 Explains (%) | F值 F value | P值 P value |
---|---|---|---|---|
总体All | 容重Bulk density (BD) | 43.2 | 26.6 | 0.002** |
速效磷Available phosphorus (AP) | 15.4 | 17.3 | 0.002** | |
全碳Total carbon (TC) | 12.1 | 9.2 | 0.004** | |
全氮Total nitrogen (TN) | 3.6 | 4.5 | 0.012* | |
速效氮Available nitrogen (AN) | 1.8 | 2.3 | 0.106 | |
未退化 Non-degradation | 全碳Total carbon (TC) | 49.8 | 15.9 | 0.002** |
速效钾Available potassium (AK) | 16.9 | 7.6 | 0.014* | |
容重Bulk density (BD) | 6.8 | 3.6 | 0.086 | |
砂粒Sand | 5.0 | 2.9 | 0.140 | |
全氮Total nitrogen (TN) | 4.9 | 3.0 | 0.124 | |
轻度退化 Light degradation | 速效钾Available potassium (AK) | 24.0 | 8.9 | 0.022* |
全氮Total nitrogen (TN) | 15.7 | 7.0 | 0.029* | |
含水量 Soil water content (SW) | 12.9 | 7.1 | 0.015* | |
黏粒Clay | 11.5 | 8.0 | 0.015* | |
容重Bulk density (BD) | 1.9 | 1.4 | 0.495 | |
中度退化 Moderate degradation | 容重Bulk density (BD) | 34.7 | 8.5 | 0.008** |
速效氮Available nitrogen (AN) | 12.2 | 3.4 | 0.042* | |
有机质Soil organic matter (SOM) | 9.4 | 3.0 | 0.052 | |
全氮Total nitrogen (TN) | 7.2 | 3.1 | 0.064 | |
含水量Soil water content (SW) | 7.2 | 2.6 | 0.092 | |
重度退化 Heavy degradation | 速效氮Available nitrogen(AN) | 19.1 | 4.5 | 0.008** |
容重Bulk density (BD) | 6.1 | 1.5 | 0.248 | |
速效磷Available phosphorus (AP) | 8.5 | 2.2 | 0.134 | |
速效钾Available potassium (AK) | 7.1 | 1.9 | 0.176 | |
全氮Total nitrogen (TN) | 3.7 | 1.0 | 0.386 |
表3 不同退化阶段土壤性质解释量及显著性检验
Table 3 Explanatory quantity and significance test of soil properties in different degradation stages
退化阶段 Degradation stages | 土壤性质 Soil properties | 解释率 Explains (%) | F值 F value | P值 P value |
---|---|---|---|---|
总体All | 容重Bulk density (BD) | 43.2 | 26.6 | 0.002** |
速效磷Available phosphorus (AP) | 15.4 | 17.3 | 0.002** | |
全碳Total carbon (TC) | 12.1 | 9.2 | 0.004** | |
全氮Total nitrogen (TN) | 3.6 | 4.5 | 0.012* | |
速效氮Available nitrogen (AN) | 1.8 | 2.3 | 0.106 | |
未退化 Non-degradation | 全碳Total carbon (TC) | 49.8 | 15.9 | 0.002** |
速效钾Available potassium (AK) | 16.9 | 7.6 | 0.014* | |
容重Bulk density (BD) | 6.8 | 3.6 | 0.086 | |
砂粒Sand | 5.0 | 2.9 | 0.140 | |
全氮Total nitrogen (TN) | 4.9 | 3.0 | 0.124 | |
轻度退化 Light degradation | 速效钾Available potassium (AK) | 24.0 | 8.9 | 0.022* |
全氮Total nitrogen (TN) | 15.7 | 7.0 | 0.029* | |
含水量 Soil water content (SW) | 12.9 | 7.1 | 0.015* | |
黏粒Clay | 11.5 | 8.0 | 0.015* | |
容重Bulk density (BD) | 1.9 | 1.4 | 0.495 | |
中度退化 Moderate degradation | 容重Bulk density (BD) | 34.7 | 8.5 | 0.008** |
速效氮Available nitrogen (AN) | 12.2 | 3.4 | 0.042* | |
有机质Soil organic matter (SOM) | 9.4 | 3.0 | 0.052 | |
全氮Total nitrogen (TN) | 7.2 | 3.1 | 0.064 | |
含水量Soil water content (SW) | 7.2 | 2.6 | 0.092 | |
重度退化 Heavy degradation | 速效氮Available nitrogen(AN) | 19.1 | 4.5 | 0.008** |
容重Bulk density (BD) | 6.1 | 1.5 | 0.248 | |
速效磷Available phosphorus (AP) | 8.5 | 2.2 | 0.134 | |
速效钾Available potassium (AK) | 7.1 | 1.9 | 0.176 | |
全氮Total nitrogen (TN) | 3.7 | 1.0 | 0.386 |
1 | Wang B Y, Yan H M, Wen X, et al. Satellite-based monitoring on green-up date for optimizing the rest-grazing period in Xilin Gol grassland. Remote Sensing, 2022, 14(14): 3443. |
2 | Lyu X, Li X B, Wang H, et al. Soil wind erosion evaluation and sustainable management of typical steppe in Inner Mongolia, China. Journal of Environmental Management, 2021, 277: 111488. |
3 | Gang C C, Zhou W, Chen Y Z, et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences, 2014, 72(11): 4273-4282. |
4 | Wu Z H, Lei S G, Bian Z F, et al. Study of the desertification index based on the albedo-MSAVI feature space for semi-arid steppe region. Environmental Earth Sciences, 2019, 78(6): 232. |
5 | Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2(10): 720-735. |
6 | Sun T S, Bao Y Q, Li W Y. Strategy on the development of grass-based livestock husbandry in the arid and semi-arid region based on sustainable utilization of grassland resources: A case study of Altay, Xinjiang, China. Chinese Journal of Ecology, 2020, 39(10): 3509-3520. |
孙特生, 包亚琴, 李文彦. 基于草地资源可持续利用的干旱半干旱区草牧业发展策略—以新疆阿勒泰地区为例. 生态学杂志, 2020, 39(10): 3509-3520. | |
7 | Yao B H, Wang C, Zhang Q, et al. Dynamic characteristics of soil physicochemical properties and microbial quantity during the degradation of Gannan alpine meadow. Journal of Soil and Water Conservation, 2019, 33(3): 138-145. |
姚宝辉, 王缠, 张倩, 等. 甘南高寒草甸退化过程中土壤理化性质和微生物数量动态变化. 水土保持学报, 2019, 33(3): 138-145. | |
8 | Xu H P, Zhang J, Pang X P, et al. Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels. Environmental Monitoring and Assessment, 2019, 191(11): 678. |
9 | Song Z B, Xin Z M, Zhu Y J. Characteristics of shrub communities in the desert-steppe ecotone of Inner Mongolia, China. Journal of Desert Research, 2022, 42(2): 104-112. |
宋兆斌, 辛智鸣, 朱雅娟. 内蒙古荒漠-草原过渡带灌木群落特征. 中国沙漠, 2022, 42(2): 104-112. | |
10 | Zhou H K, Zhao X Q, Zhou L, et al. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40. |
周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. | |
11 | Chen S Y, Zhang D G. Potassium variation in alpine meadow soil at different degradation stages. Grassland and Turf, 2013, 33(3): 74-77. |
陈淑燕, 张德罡. 不同退化阶段高寒草甸草地土壤钾素的变化分析. 草原与草坪, 2013, 33(3): 74-77. | |
12 | Ma J, Qin J R, Ma H B, et al. Soil characteristic changes and quality evaluation of degraded desert steppe in arid windy sandy areas. PeerJ, 2022, 10: e13100. |
13 | Tang Z S, An H, Deng L, et al. Effect of desertification on productivity in a desert steppe. Scientific Reports, 2016, 6: 27839. |
14 | Li H Y, Qiu Y Z, Yao T, et al. Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau. Science of the Total Environment, 2021, 792: 148363. |
15 | Li C Y, Peng F, Xue X, et al. Degradation stage effects on vegetation and soil properties interactions in alpine steppe. Journal of Mountain Science, 2021, 18(3): 646-657. |
16 | Zhan T Y, Hou G, Liu M, et al. Different characteristics of vegetation and soil properties along degraded gradients of alpine grasslands in the Qinghai-Tibet Plateau. Pratacultural Science, 2019, 36(4): 1010-1021. |
詹天宇, 侯阁, 刘苗, 等. 青藏高原不同退化梯度高寒草地植被与土壤属性分异特征. 草业科学, 2019, 36(4): 1010-1021. | |
17 | Zhang J G, Wang L D, Yao T, et al. Characteristics of plant community and soil nutrient of different degraded grasslands in Eastern Qilian Mountains. Journal of Soil and Water Conservation, 2019, 33(1): 227-233. |
张建贵, 王理德, 姚拓, 等. 东祁连山不同退化草地植物群落特征与土壤养分特性. 水土保持学报, 2019, 33(1): 227-233. | |
18 | Chen Y Y, Jia Q M, Chen K Y, et al. The productive performance and photosynthetic characteristics of six forages in arid sandy area of Yanchi, Ningxia. Journal of Arid Land Resources and Environment, 2015, 29(5): 111-115. |
陈彦云, 贾倩民, 陈科元, 等. 宁夏盐池干旱风沙区六种牧草的生产性能及光合特性研究. 干旱区资源与环境, 2015, 29(5): 111-115. | |
19 | Wang B, Zhong J T, Tan M B. Spatial pattern analysis of grazing grassland ecosystem services in Yanchi County from 2000 to 2015. Ecological Science, 2023, 42(1): 30-39. |
王蓓, 仲俊涛, 谭美宝. 2000-2015年盐池县禁牧草地生态系统服务空间格局. 生态科学, 2023, 42(1): 30-39. | |
20 | Lyu X, Li X B, Dang D L, et al. A perspective on the impact of grassland degradation on ecosystem services for the purpose of sustainable management. Remote Sensing, 2022, 14(20): 5120. |
21 | Yu H Q, Jiang Q, Wang Z J, et al. Application of VOR and CVOR index for health assessment of desert steppe in Ningxia-taking Yanchi County for example. Acta Agrestia Sinica, 2018, 26(3): 584-590. |
俞鸿千, 蒋齐, 王占军, 等. VOR、CVOR指数在宁夏干旱风沙区荒漠草原健康评价中的应用-以盐池县为例. 草地学报, 2018, 26(3): 584-590. | |
22 | Nie M H, Shen Y, Lu Y, et al. Ecostoichiometric characteristics of dominant plant leaves-soil ecology in different communities of desert steppe in Yanchi County, Ningxia. Acta Agrestia Sinica, 2021, 29(1): 131-140. |
聂明鹤, 沈艳, 陆颖, 等. 宁夏盐池县荒漠草原区不同群落优势植物叶片-土壤生态化学计量特征. 草地学报, 2021, 29(1): 131-140. | |
23 | Zhao X X, Rao L Y, Shen Z Z. Heterogeneous characteristics of soil physical properties of different terrain locations in the Pisha sandstone area. Chinese Journal of Applied and Environmental Biology, 2020, 26(6): 1359-1368. |
赵晓雪, 饶良懿, 申震洲. 砒砂岩区不同地形位置土壤物理性质分异特征. 应用与环境生物学报, 2020, 26(6): 1359-1368. | |
24 | Namdar-Khojasteh D, Shorafa M, Heidari A. Estimating soil water content from permittivity for different mineralogies and bulk densities. Soil Science Society of America Journal, 2012, 76(4): 1149. |
25 | Wan Q, Wang J, Wang X T, et al. Effects of different meadow use types on the fractal characteristics of soil particle in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2022, 42(5): 1716-1726. |
宛倩, 王杰, 王向涛, 等. 青藏高原不同草地利用方式对土壤粒径分形特征的影响. 生态学报, 2022, 42(5): 1716-1726. | |
26 | Bao S D. Agrochemistry analysis of soil (the third edition). Beijing: China Agriculture Press, 2005. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2005. | |
27 | Su D X, Zhang Z H, Chen Z Z, et al. Parameters for degradation, sandification and salification of rangelands, GB19377-2003. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2004. |
苏大学, 张自和, 陈佐忠, 等. 天然草地退化、沙化、盐渍化的分级指标, GB19377-2003. 北京: 中华人民共和国国家质量监督检疫总局, 2004. | |
28 | Guo S J, Liu C X, Zhao A T, et al. Poisonous and harmful plants on natural grassland in Ningxia. Pratacultural Science, 1997, 14(6): 41-44. |
郭思加, 刘彩霞, 赵爱桃, 等. 宁夏天然草地的有毒有害植物. 草业科学, 1997, 14(6): 41-44. | |
29 | Zhang J G, Wang L D, Yao T, et al. Plant community structure and species diversity differences in alpine grassland in the Qilian Mountains with different levels of degradation. Acta Prataculturae Sinica, 2019, 28(5): 15-25. |
张建贵, 王理德, 姚拓, 等. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究. 草业学报, 2019, 28(5): 15-25. | |
30 | Li C X, Jong R D, Schmid B, et al. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau. Ecological Indicators, 2020, 119: 106641. |
31 | Mao S H, Xie Y Z, Xu D M. Impact of grassland desertification on vegetation and soil properties in Yanchi County of Ningxia Hui Autonomous Region. Bulletin of Soil and Water Conservation, 2014, 34(1): 34-39. |
毛思慧, 谢应忠, 许冬梅. 宁夏盐池县草地沙化对植被与土壤特征的影响. 水土保持通报, 2014, 34(1): 34-39. | |
32 | Hu G Z, Liu H Y, Yin Y, et al. The role of legumes in plant community succession of degraded grasslands in northern China. Land Degradation & Development, 2015, 27(2): 366-372. |
33 | Luo F L, Zhang F W, Wang C Y, et al. Response of community characteristics and representative plant living state to grassland degradation in alpine meadow of Qinghai-Tibet Plateau. Chinese Journal of Ecology, 2022, 41(1): 18-24. |
罗方林, 张法伟, 王春雨, 等. 青藏高原高寒草甸群落特征和代表性植物生存状态对草地退化的响应. 生态学杂志, 2022, 41(1): 18-24. | |
34 | Zuo X A, Zhao H L, Zhao X Y, et al. Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, northern China. Environmental Geology, 2009, 58(6): 1227-1237. |
35 | Nie H Y, Gao J X. Research progress on ecological impact and spreading mechanism of weeds in degraded grassland. Chinese Journal of Grassland, 2022, 44(7): 101-113. |
聂华月, 高吉喜. 退化草地杂草生态影响及蔓延机制研究进展. 中国草地学报, 2022, 44(7): 101-113. | |
36 | Han W Y, Lu H T, Liu G H, et al. Quantifying degradation classifications on alpine grassland in the Lhasa River Basin, Qinghai-Tibetan Plateau. Sustainability, 2019, 11(24): 1-14. |
37 | Ma Y C, Zhang J, Gao Y M, et al. Comprehensive evaluation on soil nutrient change characteristics and quality of different degraded grasslands in Qilian Mountains. Acta Agrestia Sinica, 2022, 30(7): 1621-1629. |
马亚春, 张洁, 高亚敏, 等. 祁连山不同退化草地土壤养分变化特征及质量综合评价. 草地学报, 2022, 30(7): 1621-1629. | |
38 | Yan Y C, Xin X P, Xu X L, et al. Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China. Plant and Soil, 2013, 369(1): 585-598. |
39 | Peng Y, Sun J Y, Ma S J, et al. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet. Acta Prataculturae Sinica, 2022, 31(8): 49-60. |
彭艳, 孙晶远, 马素洁, 等. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性. 草业学报, 2022, 31(8): 49-60. | |
40 | Müller M, Oelmann Y, Schickhoff U, et al. Himalayan treeline soil and foliar C∶N∶P stoichiometry indicate nutrient shortage with elevation. Geoderma, 2017, 291: 21-32. |
41 | Yang C, Wang C Y, Wang W Y, et al. Soil nutrient characteristics and quality evaluation of alpine grassland in the source area of the Yellow River on the Qinghai Tibet Plateau. Ecology and Environmental Sciences, 2022, 31(5): 896-908. |
杨冲, 王春燕, 王文颖, 等. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价. 生态环境学报, 2022, 31(5): 896-908. | |
42 | Guo N, Degen A A, Deng B, et al. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agriculture, Ecosystems & Environment, 2019, 284: 106593. |
43 | Peng F, Xue X, Li C Y, et al. Plant community of alpine steppe shows stronger association with soil properties than alpine meadow alongside degradation. Science of the Total Environment, 2020, 733: 139048. |
44 | Yang C, Sun J. Impact of soil degradation on plant communities in an overgrazed Tibetan alpine meadow. Journal of Arid Environments, 2021, 193: 104586. |
45 | Ren G H, Wu G L, Dong Q M, et al. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. CLEAN-Soil, Air, Water, 2014, 42(3): 319-323. |
46 | Liu M, Zhang Z C, Sun J, et al. The response of vegetation biomass to soil properties along degradation gradients of alpine meadow at Zoige Plateau. China Geographical Science, 2020, 30(3): 446-455. |
47 | Yuan Z Q, Jiang X J, Liu G J, et al. Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. Catena, 2019, 178: 40-48. |
48 | Wei W D, Liu Y H, Ma H, et al. Relationships between soil factors and grassland degradation on an alpine grassland based on redundancy analysis. Pratacultural Science, 2018, 35(3): 472-481. |
魏卫东, 刘育红, 马辉, 等. 基于冗余分析的高寒草原土壤与草地退化关系. 草业科学, 2018, 35(3): 472-481. | |
49 | Li X B, Bai Y X, Wen W Y, et al. Effects of grassland degradation and precipitation on carbon storage distributions in a semi-arid temperate grassland of Inner Mongolia, China. Acta Oecologica, 2017, 85: 44-52. |
50 | Raiesi F, Salek-Gilani S. Development of a soil quality index for characterizing effects of land use changes on degradation and ecological restoration of rangeland soils in a semi-arid ecosystem. Land Degradation & Development, 2020, 31(12): 1533-1544. |
51 | Zhang J X, Cao G M. The nitrogen cycle in an alpine meadow ecosystem. Acta Ecologica Sinica, 1999, 19(4): 509-512. |
张金霞, 曹广民. 高寒草甸生态系统氮素循环. 生态学报, 1999, 19(4): 509-512. |
[1] | 佘洁, 沈爱红, 石云, 赵娜, 张风红, 何洪源, 吴涛, 李红霞, 马益婷, 朱晓雯. 基于无人机遥感影像和面向对象技术的荒漠草原植被分类[J]. 草业学报, 2024, 33(7): 1-14. |
[2] | 李思媛, 孙宗玖, 于冰洁, 周晨烨, 周磊, 郑丽, 刘慧霞, 冶华薇. 封育对伊犁绢蒿荒漠草地土壤碳氮磷、酶活性及其化学计量特征的影响[J]. 草业学报, 2024, 33(7): 25-40. |
[3] | 张成兰, 刘春增, 吕玉虎, 李本银, 张琳, 丁丽, 杜光辉, 张香凝, 郑春风, 张济世, 李敏, 曹卫东. 不同年限紫云英配施减量化肥对土壤磷吸附解吸特征的影响[J]. 草业学报, 2024, 33(7): 41-52. |
[4] | 姜海鑫, 周瑶, 胡科, 丁占胜, 马红彬. 不同放牧时间对荒漠草原土壤颗粒组成及分形维数的影响[J]. 草业学报, 2024, 33(6): 17-28. |
[5] | 潘斯瑶, 宋渝川, 袁如薏, 候圣彤, 蔡俊歌, 陈冰, 程军回. 准噶尔荒漠两种灌木冠下土壤无机氮含量变化特征[J]. 草业学报, 2024, 33(5): 183-195. |
[6] | 宁建凤, 李彤, 曾瑞锟, 姚建武, 陈勇, 梁紫薇. 珠三角赤红壤常年菜地土壤肥力质量评价[J]. 草业学报, 2024, 33(5): 25-40. |
[7] | 尹仲毅, 马黎华, 李兆磊, 冯桦, 蒋先军. 高温条件对不同耕作模式紫色水稻土水、热、盐的影响[J]. 草业学报, 2024, 33(5): 80-91. |
[8] | 何升然, 刘晓静, 赵雅姣, 汪雪, 王静. 紫花苜蓿/甜高粱间作对根际土壤特性及微生物群落特征的影响[J]. 草业学报, 2024, 33(5): 92-105. |
[9] | 秦瑞敏, 程思佳, 马丽, 张中华, 魏晶晶, 苏洪烨, 史正晨, 常涛, 胡雪, 阿的哈则, 袁访, 李珊, 周华坤. 围封和施肥对高寒草甸群落特征和植被碳氮库的影响[J]. 草业学报, 2024, 33(4): 1-11. |
[10] | 常单娜, 陈子英, 韩梅, 李正鹏, 严清彪, 吕帅磊, 周国朋, 孙小凤, 曹卫东. 毛叶苕子磷获取特征及根际特性的基因型差异[J]. 草业学报, 2024, 33(4): 122-134. |
[11] | 赵亚楠, 王红梅, 李志丽, 张振杰, 陈彦硕, 苏荣霞. 荒漠草原灌丛转变过程土壤水分亏缺空间特征及影响因素[J]. 草业学报, 2024, 33(4): 22-34. |
[12] | 黄琳曦, 陈倩, 张先言, 闫顺, 杨云, 辛培尧, 汪琼. 两种乔木凋落叶浸提液处理对地毯草土壤酶活性及其化学计量比的影响[J]. 草业学报, 2024, 33(4): 35-46. |
[13] | 于双, 李小伟, 王瑞霞, 杨君珑, 马龙. 灵武白芨滩不同年限柠条固沙林林下草本群落演替规律及机制[J]. 草业学报, 2024, 33(3): 13-23. |
[14] | 李俊瑶, 蒋星驰, 胡晋瑜, 魏栋光, 赵学勇, 王少昆. 生物有机肥施加对荒漠草原植被-土壤-微生物的影响[J]. 草业学报, 2024, 33(3): 34-45. |
[15] | 王安林, 马瑞, 马彦军, 刘腾, 田永胜, 董正虎, 柴巧弟. 复合型治沙措施对土壤细菌群落结构及功能的影响[J]. 草业学报, 2024, 33(3): 46-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||