欢迎访问《草业学报》官方网站,今天是

草业学报 ›› 2026, Vol. 35 ›› Issue (4): 67-85.DOI: 10.11686/cyxb2025195

• 研究论文 • 上一篇    下一篇

荒漠植物根际土壤核心细菌群落及其功能研究

李建男1(), 唐凯1, 孟建宇1(), 冯福应2, 赵秀娟2, 李雪菲2, 赵子怡2, 陈向阳2   

  1. 1.内蒙古农业大学生命科学学院,内蒙古 呼和浩特 010011
    2.旱寒区环境微生物学与技术实验室,内蒙古 呼和浩特 010011
  • 收稿日期:2025-05-19 修回日期:2025-07-01 出版日期:2026-04-20 发布日期:2026-02-07
  • 通讯作者: 孟建宇
  • 作者简介:Corresponding author. E-mail: meng_jianyu@imau.edu.cn
    李建男(1999-),男,满族,内蒙古呼和浩特人,在读硕士。E-mail: 140473284@163.com
  • 基金资助:
    内蒙古自治区科技计划(2023YFHH0028);内蒙古自然科学面上基金(2022MS03025);内蒙古自然科学面上基金(2023MS03016)

A study of the core bacterial community and its functions in the rhizosphere soil of desert plants

Jian-nan LI1(), Kai TANG1, Jian-yu MENG1(), Fu-ying FENG2, Xiu-juan ZHAO2, Xue-fei LI2, Zi-yi ZHAO2, Xiang-yang CHEN2   

  1. 1.College of Life Sciences,Inner Mongolia Agricultural University,Hohhot 010011,China
    2.Laboratory of Environmental Microbiology and Technology for Arid-Cold Regions,Hohhot 010011,China
  • Received:2025-05-19 Revised:2025-07-01 Online:2026-04-20 Published:2026-02-07
  • Contact: Jian-yu MENG

摘要:

为解析荒漠植物根际微生物资源及其生态功能,本研究以鄂尔多斯高原沙地草原5种典型荒漠植物沙韭、杨柴、枸杞、猫头刺和大果沙棘为对象,采用三代高通量测序技术对根际土壤细菌进行全长16S rRNA基因测序,结合生物信息学分析揭示其群落特征与功能差异。结果表明:变形菌门、放线菌门和拟杆菌门为共有的优势菌门,其中属于放线菌门的类节杆菌属、节杆菌属和假节杆菌属在共现网络中具有较高连接度,构成核心微生物群落。枸杞根际呈独特的群落结构,其绿弯菌门相对丰度显著高于其他植物(P<0.05),且富集长微菌属等特异生物标志物。功能预测显示大果沙棘根际微生物碳固定通路丰度最高,而枸杞特有脂肪酸延伸通路。土壤理化分析表明有机质和速效磷是驱动枸杞根际细菌群落差异的关键因子,pH是驱动大果沙棘、猫头刺和沙韭根际细菌群落的关键因子。本研究发现荒漠植物通过特异性招募假节杆菌属等核心菌群构建抗逆功能模块,为微生物介导的荒漠生态修复提供基础研究及理论依据。

关键词: 荒漠沙地草原, 荒漠植物, 根际细菌, 核心群落, 群落结构及功能

Abstract:

To decipher the rhizosphere microbial resources and their ecological functions in desert plants, this study focused on five typical desert plant species in the sandy grassland of the Ordos Plateau: Allium bidentatumHedysarum mongolicumLycium chinenseOxytropis aciphylla, and Fructus hippophae. Third-generation high-throughput sequencing of full-length 16S rRNA genes was performed on rhizosphere soil bacteria, combined with bioinformatics analysis to reveal community characteristics and functional divergence. It was found that Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla shared across all plant species. Within Actinobacteria, genera PaenarthrobacterArthrobacter, and Pseudarthrobacter exhibited high connectivity in the co-occurrence network, forming the core microbial community. The L. chinense rhizosphere displayed a unique community structure, with significantly higher relative abundance of Chloroflexi compared to other plant species (P<0.05), and enrichment of specific biomarkers such as Longimicrobium. Functional prediction indicated that the rhizosphere microbiota of F. hippophae had the highest abundance of carbon fixation pathways (e.g., one-carbon pool by folate), while L. chinense uniquely enriched the fatty acid elongation pathways. Soil physicochemical analysis identified organic matter and available phosphorus as key drivers of bacterial community divergence in the L. chinense rhizosphere, whereas pH primarily shaped the communities of F. hippophaeO. aciphylla, and A. bidentatum. In summary, the findings reveal that desert plants recruit stress-resistant functional microbes to their rhizosphere through selective enrichment of core genera like Pseudarthrobacter, thus providing insight and theoretical support for microbial-mediated restoration of desert ecosystems.

Key words: desert sand steppe, desert plant, rhizobacteria, core community, community structure and function