草业学报 ›› 2011, Vol. 20 ›› Issue (2): 244-252.
杨惠敏*,王冬梅
收稿日期:
2011-01-03
出版日期:
2011-02-25
发布日期:
2011-04-20
通讯作者:
E-mail:huimyang@lzu.edu.cn
作者简介:
杨惠敏(1978-),男,湖北应城人,博士,副教授。E-mail:huimyang@lzu.edu.cn
基金资助:
YANG Hui-min, WANG Dong-mei
Received:
2011-01-03
Online:
2011-02-25
Published:
2011-04-20
摘要: 生态化学计量学(ecological stoichiometry)是研究生物系统能量和化学元素(主要如C、N和P等)平衡的科学,为研究元素在生物地球化学循环和生态过程中的计量关系和规律提供了一种综合方法。陆地生态系统方面的研究虽然起步较晚,但近10年来也取得了较大的发展,已涉及到天然草原、森林、湿地和农田等亚系统,研究内容除了测定生态化学计量比,还将不同系统、功能群和物种间植物的计量学特征进行比较,以及将计量学特征与环境因子偶联研究。笔者对草-环境系统植物C、N和P生态化学计量学的研究进行了综合分析,重点论述了天然草原系统植物C、N和P生态化学计量学特征及其对环境因子的响应规律。
中图分类号:
杨惠敏,王冬梅. 草-环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J]. 草业学报, 2011, 20(2): 244-252.
YANG Hui-min, WANG Dong-mei. Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors[J]. Acta Prataculturae Sinica, 2011, 20(2): 244-252.
[1] McGroddy M E, Daufresne T, Hedin L O. Scaling of C∶N∶P stoichiometry in forests worldwide: Implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85: 2390-2401. [2] Niklas K J, Cobb E D. N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth[J]. American Journal of Botany, 2005, 92: 1256-1263. [3] Yang Y, Luo Y. Carbon:nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20: 354-361. [4] Niklas K J. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates[J]. Annals of Botany, 2006, 97: 155-163. [5] Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters, 2005, 8: 636-642. [6] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821-827. [7] Reich P B, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001-11006. [8] Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton, NJ, USA: Princeton University Press, 2002. [9] Redfield A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46: 205-221. [10] 贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34: 2-6. [11] 陈滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30: 1628-1637. [12] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28: 3937-3947. [13] 曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29: 1007-1019. [14] gren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39: 153-170. [15] Moe S J, Stelzer R S, Forman M R, et al. Recent advances in ecological stoichiometry: Insights for population and community ecology[J]. Oikos, 2005, 109: 29-39. [16] Zhang L X, Bai Y F, Han X G. Application of N∶P stoichiometry to ecology studies[J]. Acta Botanica Sinica, 2003, 45: 1009-1018. [17] Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3: 540-550. [18] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377-385. [19] 周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34: 7-16. [20] Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136: 679-689. [21] Güsewell S, Koerselman W. Variation in nitrogen and phosphorus concentrations of wetland plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2002, 5: 37-61. [22] Zheng S, Shangguan Z. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China[J]. Trees, 2007, 21: 357-370. [23] He J S, Wang L, Flynn D F B, et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155: 301-310. [24] He J S, Fang J, Wang Z, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China[J]. Oecologia, 2006, 149: 115-122. [25] 阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34: 48-57. [26] Cui Q, Lv X T, Wang Q B, et al. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe[J]. Plant and Soil, 2010, 334: 209-219. [27] Kerkhoff A J, Fagan W F, Elser J J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants[J]. The American Naturalist, 2006, 168: 103-122. [28] 徐冰, 程雨曦, 甘慧洁, 等. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[J]. 植物生态学报, 2010, 34: 29-38. [29] Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 7362-7366. [30] 吴统贵, 吴明, 刘丽, 等. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J]. 植物生态学报, 2010, 34: 23-28. [31] 杨阔, 黄建辉, 董丹, 等. 青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J]. 植物生态学报, 2010, 34: 17-22. [32] Hooker T D, Compton J E. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment[J]. Ecological Applications, 2003, 13: 299-313. [33] Clinton P W, Allen R B, Davis M R. Nitrogen storage and availability during stand development in a New Zealand Nothofagus forest[J]. Canadian Journal of Forest Research, 2002, 32: 344-352. [34] 银晓瑞, 梁存柱, 王立新, 等. 内蒙古典型草原不同恢复演替阶段植物养分化学计量学[J]. 植物生态学报, 2010, 34: 39-47. [35] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010, 34: 64-71. [36] 高三平, 李俊祥, 徐明策, 等. 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J]. 生态学报, 2007, 27: 947-952. [37] 阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N∶P化学计量特征[J]. 植物生态学报, 2008, 32: 13-22. [38] Güsewell S. N∶P ratios in terrestrial plants: Variation and functional significance[J]. New Phytologist, 2004, 164: 243-266. [39] Yang H, Unkovich M, McNeill A, et al. Symbiotic N2 fixation and nitrate utilisation in irrigated lucerne (Medicago sativa) systems[J]. Biology and Fertility of Soils, 2011, DOI:10.1007/s00374-00011-00543-00377. [40] Vitousek P M. Nutrient Cycling and Limitation: Hawai’i as a Model System[M]. Princeton: Princeton University Press, 2004. [41] Kerkhoff A J, Enquist B J, Elser J J, et al. Plant allometry, stoichiometry and the temperature-dependence of primary productivity[J]. Global Ecology and Biogeography, 2005, 14: 585-598. [42] 任书杰, 于贵瑞, 陶波, 等. 兴安落叶松(Larix gmelinii Rupr.)叶片养分的空间分布格局[J]. 生态学报, 2009, 29: 1899-1906. [43] Krner C. The nutritional status of plants from high altitudes: A worldwide comparison[J]. Oecologia, 1989, 81: 379-391. [44] Townsend A R, Cleveland C C, Asner G P, et al. Controls over foliar N∶P ratios in tropical rain forests[J]. Ecology, 2007, 88: 107-118. [45] Reich P B, Hungate B A, Luo Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide[J]. Annual Review of Ecology, Evolution, and Systematics, 2006, 37: 611-636. [46] Luo Y Q, Hui D F, Zhang D Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis[J]. Ecology, 2006, 87: 53-63. [47] Britton A J, Helliwell R C, Fisher J M, et al. Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland[J]. Environmental Pollution, 2008, 156: 409-416. [48] Craine J M, Morrow C, Stock W D. Nutrient concentration ratios and co-limitation in South African grasslands[J]. New Phytologist, 2008, 179: 829-836. [49] Henry H A L, Chiariello N R, Vitousek P M, et al. Interactive effects of fire, elevated carbon dioxide, nitrogen deposition, and precipitation on a California annual grassland[J]. Ecosystems, 2006, 9: 1066-1075. [50] 陈伏生, 胡小飞, 葛刚. 城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率[J]. 草业学报, 2007, 16: 47-54. [51] Kozovits A R, Bustamante M M C, Garofalo C R, et al. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna[J]. Functional Ecology, 2007, 21: 1034-1043. [52] Novotny A M, Schade J D, Hobbie S E, et al. Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity[J]. Oecologia, 2007, 151: 687-696. [53] Elser J J, Bracken M E S, Cleland E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10: 1135-1142. [54] Zhang L X, Bai Y F, Han X G. Differential responses of N∶P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol[J]. Acta Botanica Sinica, 2004, 46: 259-270. [55] Ojima D S, Schimel D S, Parton W J, et al. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie[J]. Biogeochemistry, 1994, 24: 67-84. [56] Wan S, Hui D, Luo Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis[J]. Ecological Applications, 2001, 11: 1349-1365. [57] Rau B M, Blank R R, Chambers J C, et al. Prescribed fire in a Great Basin sagebrush ecosystem: Dynamics of soil extractable nitrogen and phosphorus[J]. Journal of Arid Environments, 2007, 71: 362-375. [58] Bennett L T, Judd T S, Adams M A. Growth and nutrient content of perennial grasslands following burning in semi-arid, sub-tropical Australia[J]. Plant Ecology, 2003, 164: 185-199. [59] Van de Vijver C, Poot P, Prins H H T. Causes of increased nutrient concentrations in post-fire regrowth in an East African savanna[J]. Plant and Soil, 1999, 214: 173-185. [60] Cech P G, Kuster T, Edwards P J, et al. Effects of herbivory, fire and N2-fixation on nutrient limitation in a humid African savanna[J]. Ecosystems, 2008, 11: 991-1004. [61] Frank D A. Ungulate and topographic control of nitrogen:phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates[J]. Oikos, 2008, 117: 591-601. [62] Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13: 1390-1399. [63] Bai Y, Wu J, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia Grasslands[J]. Global Change Biology, 2010, 16: 358-372. [64] Yu Q, Elser J, He N, et al. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland[J]. Oecologia, 2011, DOI:10.1007/s00442-00010-01902-z. [65] Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186: 593-608. [66] González A L, Kominoski J S, Danger M, et al. Can ecological stoichiometry help explain patterns of biological invasions?[J]. Oikos, 2010, 119: 779-790. [67] Funk J L, Vitousek P M. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007, 446: 1079-1081. [68] Güsewell S, Koerselman W, Verhoeven J T A. Biomass N∶P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications, 2003, 13: 372-384. [69] Aerts R, Wallén B, Malmer N. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply[J]. Journal of Ecology, 1992, 80: 131-140. [70] Koerselman W, Meuleman A F M. The vegetation N∶P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441-1450. [71] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578-580. [72] 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998. [73] 袁伟, 董元华, 王辉. 小青菜对不同施肥模式的响应及其生态化学计量学特征[J]. 生态与农村环境学报, 2010, 26: 273-278. [74] Jia Y, Li F M, Wang X L, et al. Dynamics of soil organic carbon and soil fertility affected by alfalfa productivity in a semiarid agro-ecosystem[J]. Biogeochemistry, 2006, 80: 233-243. [75] 任继周. 草地农业生态系统通论[M]. 合肥: 安徽教育出版社, 2004. |
[1] | 王大为,赵军,韩涛,李丽丽. 基于CSCS的黑河上游潜在植被NPP及其水热关系研究[J]. 草业学报, 2014, 23(6): 11-19. |
[2] | 胡澍,焦菊英,杜华栋,苗芳. 黄土丘陵沟壑区不同立地环境下植物的抗氧化特性[J]. 草业学报, 2014, 23(5): 1-12. |
[3] | 杨菁,谢应忠,吴旭东,徐坤. 不同种植年限人工苜蓿草地植物和土壤化学计量特征[J]. 草业学报, 2014, 23(2): 340-345. |
[4] | 王喜勇,高蕊,周晓青,魏岩. 角果藜的结实格局及地下散布单位的入土机制[J]. 草业学报, 2014, 23(2): 352-357. |
[5] | 张志达,于应文,花立民,蒲训,王虎成,梁天刚. 甘肃省野生维管植物多样性分布格局分析[J]. 草业学报, 2014, 23(1): 22-30. |
[6] | 刘庆超,刘庆华,马宗骧,王奎玲. 三桠乌药耐阴性研究[J]. 草业学报, 2013, 22(6): 93-99. |
[7] | 肖绪培,宋乃平,谢腾腾,方楷. 荒漠草原区围封草地群落特征及其形成机制[J]. 草业学报, 2013, 22(6): 321-327. |
[8] | 李玉洁,李刚,宋晓龙,赵建宁,修伟明,杨殿林. 休牧对贝加尔针茅草原土壤微生物群落功能多样性的影响[J]. 草业学报, 2013, 22(6): 21-30. |
[9] | 高凯,朱铁霞,韩国栋. 围封年限对内蒙古羊草-针茅典型草原植物功能群及其多样性的影响[J]. 草业学报, 2013, 22(6): 39-45. |
[10] | 秦川,何丙辉,刘永鑫,李天阳,严丽,马希武. 生物埂护坡上黄花根系分布特征及其对土壤养分的影响[J]. 草业学报, 2013, 22(5): 256-264. |
[11] | 王志伟,史健宗,岳广阳,赵林,南卓铜,吴晓东,乔永平,吴通华,邹德福. 玉树地区融合决策树方法的面向对象植被分类[J]. 草业学报, 2013, 22(5): 62-71. |
[12] | 郝婧,张婕,张沛沛,郭东罡,王丽媛,上官铁梁,黄汉富,宋向阳. 煤矸石场植被自然恢复初期草本植物生物量研究[J]. 草业学报, 2013, 22(4): 51-60. |
[13] | 高晓星,满百膺,陈秀蓉,杨成德. 东祁连山线叶嵩草内生细菌X4的产吲哚乙酸、解磷、抗菌和耐盐特性研究及分子鉴定[J]. 草业学报, 2013, 22(4): 137-146. |
[14] | 肖亮,蒋建雄,易自力,艾辛,覃静萍,刘树玲,陈智勇,林聪. 广西省芒野生居群表型多样性研究[J]. 草业学报, 2013, 22(4): 43-50. |
[15] | 张存厚,王明玖,张立,杨丽萍. 呼伦贝尔草甸草原地上净初级生产力对气候变化响应的模拟[J]. 草业学报, 2013, 22(3): 41-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||