草业学报 ›› 2013, Vol. 22 ›› Issue (2): 290-299.
张英俊1*,杨高文1,刘楠1,常书娟1,2,王晓亚1
收稿日期:
2012-03-06
出版日期:
2013-02-25
发布日期:
2013-04-20
通讯作者:
E-mail: zhangyj@cau.edu.cn
作者简介:
张英俊(1971-),男,内蒙古四子王旗人,教授,博士生导师,博士。
基金资助:
ZHANG Ying-jun1, YANG Gao-wen1, LIU Nan1, CHANG Shu-juan1,2, WANG Xiao-ya1
Received:
2012-03-06
Online:
2013-02-25
Published:
2013-04-20
摘要: 我国约4亿hm2草原,草原具有强大碳汇功能,但人们对草原碳汇管理的认识和研究还不足。综述了CO2、温度及降雨等气象因子和草原开垦、放牧、割草、施肥、人工草地建植等草地管理措施对草原碳汇功能的影响及其作用机制,以期对我国草原管理实践提供借鉴。温度和降雨的改变对不同类型草原的碳汇功能影响不同,以碳汇为目标的草地管理,必须综合考虑气候变化对碳固持的影响。草地退化生产力下降,土壤理化环境恶化,土壤有机碳含量降低,退化草地具有较大的固碳潜力,采用合理的草原管理措施能够极大的提高草地有机碳含量,据估算全国重度退化草地如果全面实施围栏封育措施,固碳潜力每年达12.01 Tg C。过度放牧改变了草原植被群落结构,降低净初级生产力,C∶N增加,土壤氮的亏缺限制碳的固持,枯落物的量也降低,减少有机质的形成,草原碳汇功能降低。合理放牧管理增强草原碳汇功能。草原开垦减少枯落物的输入增加了土壤侵蚀,使土壤有机质暴露在空气中,土壤有机质的氧化分解加快,降低土壤有机质含量。高强度的刈割利用不利于草地碳汇,刈割利用要选择合适的刈割时间和刈割高度,并通过粪尿或施肥等管理措施,返还割草地损失的营养物质。施肥、补播、耕翻和灌溉等改良措施促进草原植被更新,提高草原生产力,增强草原固碳能力。农田弃耕和围封禁牧增强草地碳汇功能,配合施肥补播等其他管理措施,可以促进植被恢复,提高其固碳效率。退耕还草增加草原碳汇,牧草固碳能力强弱为:豆禾混播>多年生豆科牧草>多年生禾本科牧草>一年生禾草。
中图分类号:
张英俊,杨高文,刘楠,常书娟,王晓亚. 草原碳汇管理对策[J]. 草业学报, 2013, 22(2): 290-299.
ZHANG Ying-jun, YANG Gao-wen, LIU Nan, CHANG Shu-juan, WANG Xiao-ya. Review of grassland management practices for carbon sequestration[J]. Acta Prataculturae Sinica, 2013, 22(2): 290-299.
[1] Houghton R A. Balancing the global carbon budget[J]. Annual Review of Earth and Planetary Sciences, 2007, 35: 313-347. [2] Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458: 1009-1014. [3] Schuman G E, Janzen H H, Herrick J E. Soil carbon dynamics and potential carbon sequestration by rangelands[J]. Environmental Pollution, 2002, 116: 391-396. [4] Ni J. Carbon storage in grasslands of China[J]. Journal of Arid Environments, 2002, 50: 205-218. [5] Lu Y, Zhuang Q, Zhou G, et al. Possible decline of the carbon sink in the Mongolian Plateau during the 21st century[J]. Environmental Research Letters, 2009, 4: 1-8. [6] Liebig M A, Gross J R, Kronberg S L, et al. Grazing management contributions to net global warming potential: a long-term evaluation in the Northern Great Plains[J]. Journal of Environmental Quality, 2010, 39: 799-809. [7] Wang S, Wilkes A, Zhang Z, et al. Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis[J]. Agriculture, Ecosystems & Environment, 2011, 142: 329-340. [8] 任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究[J]. 草业学报, 2011, 20: 1-22. [9] Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature, 2004, 431: 181-184. [10] Lesica P, Kittelson P M. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland[J]. Journal of Arid Environments, 2010, 74: 1013-1017. [11] Hao Y B, Wang Y F, Cui X Y. Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2010, 34: 898-906. [12] Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands[J]. Global Change Biology, 2008, 14: 1592-1599. [13] Li L H, Bai W M, Wan S Q, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling[J]. Global Change Biology, 2010, 16: 1306-1316. [14] Yu H, Luedeling E, Xu J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2010, 107: 22151-22156. [15] Wu J G, Ai L, Chang W. Soil organic carbon mineralization and its affecting factors under four typical vegetation sinmid Qilian Mounatins[J]. Chinese Journal of Ecology, 2007, 26: 1703-1711. [16] 吴永胜, 马万里, 李浩, 等. 内蒙古退化荒漠草原土壤有机碳和微生物生物量碳含量的季节变化[J]. 应用生态学报, 2010, 21: 312-316. [17] 赵锦梅. 祁连山东段不同退化程度高寒草地土壤有机碳储量的研究[D]. 兰州: 甘肃农业大学, 2006. [18] 王文颖, 王启基, 王刚. 高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响[J]. 生态环境, 2006, 15: 362-366. [19] 樊恒文, 贾晓红, 张景光, 等. 干旱区土地退化与荒漠化对土壤碳循环的影响[J]. 中国沙漠, 2002, 6: 525-533. [20] 祝列克. 中国荒漠化和沙化动态研究[M]. 北京: 中国农业出版社, 2006. [21] Wu T Y, Jeff J S, Li F M, et al. Influence of cultivation on organic carbon in three typical soils of China Loess Plateau and Canada Prairies[J]. Chinese Journal of Applied Ecology, 2003, 14: 2213-2218. [22] Yan Y C, Tang H P, Chang R Y, et al. Variation of belowground carbon sequestration under long term cultivation and grazing in the typical steppe of nei Monggol in North China[J]. Environmental Science, 2008, 29: 1388-1393. [23] 许中旗, 赵盼茹, 王英舜, 等. 人为干扰对典型草原土壤侵蚀影响的价值评价[J]. 中国草地学报, 2007, 29: 1-6. [24] Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 2000, 6: 317-327. [25] Ciais P, Bousquet P, Freibauer A, et al. Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2[J]. Global Biogeochemical Cycles, 2007, 21. [26] Luo Z K, Wang E L, Sun O J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments[J]. Agriculture, Ecosystems & Environment, 2010, 139: 224-231. [27] Pineiro G, Paruelo J M, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen[J]. Rangeland Ecology & Management, 2010, 63: 109-119. [28] Derner J D, Boutton T W, Briske D D. Grazing and ecosystem carbon storage in the North American Great Plains[J]. Plant and Soil, 2006, 280: 77-90. [29] Wang M J, Han G D, Zhao M L, et al. The effects of different grazing intensity on soil organic carbon content in meadow steppe[J]. Patacultural Science, 2007, 24: 6-10. [30] Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition[J]. Ecology Letters, 2010, 13: 959-968. [31] Li L H, Liu X H, Chen Z Z. Study on the carbon cycle of Leymus chinensis steppe in the Xilin river basin[J]. Acta Botanica Sinica, 1998, 40: 955-961. [32] Li L H, Li X, Bai W M, et al. Soil carbon budget of a grazed Leymus chinensis steppe community in the Xilin river basin of Inner Mongolia[J]. Acta Phytoecologica Sinica, 2004, 28: 312-317. [33] 王国成, 张稳, 黄耀. 1981-2001年内蒙古草地净初级生产力时空变化特征[J]. 草业科学, 2011, 28: 2016-2025. [34] Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands[J]. Environmental Pollution, 2002, 116: 457-463. [35] Martinsen V, Mulder J, Austrheim G, et al. Carbon storage in low-alpine grassland soils: effects of different grazing intensities of sheep[J]. European Journal of Soil Science, 2011, 62: 822-833. [36] 李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影响[J]. 植物生态学报, 1998, 22: 300-302. [37] Rutledge S, Campbell D I, Baldocchi D, et al. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter[J]. Global Change Biology, 2010, 16: 3065-3074. [38] 王国良. 内蒙古高原南缘草甸草原可持续利用研究[D].北京: 中国农业科学院, 2007. [39] Franzluebbers A J, Stuedemann J A. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA[J]. Agriculture Ecosystems & Environment, 2009, 129: 28-36. [40] Zhou Z Y, Sun O J, Huang J H, et al. Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China[J]. Biogeochemistry, 2007, 82: 127-138. [41] 宁发, 徐柱, 单贵莲. 干扰方式对典型草原土壤理化性质的影响[J]. 中国草地学报, 2008, 30: 46-50. [42] 单贵莲, 徐柱, 宁发, 等. 围封年限对典型草原植被与土壤特征的影响[J]. 草业学报, 2009, 18: 3-10. [43] 郭然, 王效科, 逯非, 等. 中国草地土壤生态系统固碳现状和潜力[J]. 生态学报, 2008, 28: 862-867. [44] Wu L, He N, Wang Y, et al. Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in Leymus chinensis grasslands of northern China[J]. Journal of Environmental Quality, 2008, 37: 663-668. [45] 张洪生, 邵新庆, 刘贵河, 等. 围封、浅耕翻改良技术对退化羊草草地植被恢复的影响[J]. 草地学报, 2010, 18: 339-344. [46] 董晓玉, 傅华, 李旭东, 等. 放牧与围封对黄土高原典型草原植物生物量及其碳氮磷贮量的影响[J]. 草业学报, 2010, 19: 175-182. [47] Qu W L, Pei S F, Zhou Z G, et al. Influences of overgrazing and exclosure on carbon of soils and characteristics of vegetation in desert steppe, Inner Mongolia, North China[J]. Journal of Gansu Forestry Science and Techndogy, 2004, 29: 4-6. [48] 曹成有, 邵建飞, 蒋德明, 等. 围栏封育对重度退化草地土壤养分和生物活性的影响[J]. 东北大学学报(自然科学版), 2011, 32: 427-430. [49] Pineiro G, Paruelo J M, Jobbagy E G, et al. Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America[J]. Global Biogeochemical Cycles, 2009, 23. [50] Kiehl K. Plant species introduction in ecological restoration: possibilities and limitations[J]. Basic and Applied Ecology, 2010, 11: 281-284. [51] Conant R T, Paustian K, Elliott E T. Grassland management and conversion into grassland: Effects on soil carbon[J]. Ecological Applications, 2001, 11: 343-355. [52] 石锋, 李玉娥, 高清竹, 等. 管理措施对我国草地土壤有机碳的影响[J]. 草业科学, 2009, 26: 9-15. [53] Wang X Y, Willms W D, Hao X Y, et al. Cultivation and reseeding effects on soil organic matter in the mixed prairie[J]. Soil Science Society of America Journal, 2010, 74: 1348-1355. [54] 张伟华, 关世英, 李跃进, 等. 不同恢复措施对退化草地土壤水分和养分的影响[J]. 内蒙古农业大学学报, 2000, 21: 31-35. [55] Whitmore A P, Bradbury N J, Johnson P A. Potential contribution of plowed grassland to nitrate leaching[J]. Agriculture, Ecosystems & Environment, 1992, 39: 221-233. [56] Vellinga T V, van den Pol-van Dasselaar A, Kuikman P J. The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands[J]. Nutrient Cycling in Agroecosystems, 2004, 70: 33-45. [57] 孙庚, 吴宁, 罗鹏. 不同管理措施对川西北草地土壤氮和碳特征的影响[J]. 植物生态学报, 2005, 29: 304-310. [58] 蒋德明, 贺山峰, 曹成有, 等. 翻耙补播对科尔沁碱化草地土壤理化性质和生物活性的影响[J]. 中国草地学报, 2006, 4: 18-23. [59] 李彦军, 姚桂荣, 郭立光. 重耙、补播几种牧草改良重度盐碱化草地的当年效果调查[J]. 内蒙古草业, 2010, 1: 17-18. [60] O’Brien S L, Jastrow J D, Grimley D A, et al. Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands[J]. Global Change Biology, 2010, 16: 2573-2588. [61] 高天明, 张瑞强, 刘铁军, 等. 不同灌溉量对退化草地的生态恢复作用[J]. 中国水利, 2011, 9: 20-23. [62] Gao Z C, Chi F Q, Zhao Q. Effects of fertilization on the plant community yield and soil properties of deteriorated grassland[J]. Grassland and Turf, 2007, 2: 60-62. [63] Zhou G Y, Chen G S, Zhao Y L, et al. Comparative research on the influence of chemical fertilizer application and enclosure on alpine steppes in the Qinghai Lake area:1 Structure and species diversity of the plant community[J]. Patacultural Science, 2004, 13: 26-31. [64] De Deyn G B, Shiel R S, Ostle N J, et al. Additional carbon sequestration benefits of grassland diversity restoration[J]. Journal of Applied Ecology, 2011, 48: 600-608. [65] Liebig M A, Gross J, Kronberg S L, et al. Soil response to long-term grazing in the northern Great Plains of North America[J]. Agriculture Ecosystems & Environment, 2006, 115: 270-276. [66] van Kessel C, Boots B, de Graaff M A, et al. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment[J]. Global Change Biology, 2006, 12: 2187-2199. [67] 郑海霞, 齐莎, 赵小蓉, 等. 连续5年施用氮肥和羊粪的内蒙古羊草 (Leymus chinensis) 草原土壤颗粒状有机质特征[J]. 中国农业科学, 2008, 41: 1083-1088. [68] 姚骅, 陆建华, 蔡立群, 等. 玛曲退化草地主要植被特征对不同施肥处理的响应[J]. 甘肃农业大学学报, 2009, 44: 127-131. [69] 杜峰, 梁宗锁, 徐学选, 等. 陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应[J]. 生态学报, 2007, 27: 1673-1683. [70] 王俊明, 张兴昌. 退耕草地演替过程中的碳储量变化[J]. 草业学报, 2009, 18(1): 1-8. [71] 田洪艳, 周道玮, 郭平. 不同撂荒年限的草原农田土壤及植被的变化规律研究[J]. 东北师大学报(自然科学版), 2001, 33: 6. [72] 张平良, 李小刚, 李银科, 等. 高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响[J]. 甘肃农业大学学报, 2007, 42: 98-102. [73] Potter K N, Torbert H A, Johnson H B, et al. Carbon storage after long-term grass establishment on degraded soils[J]. Soil Science, 1999, 164: 718-725. [74] 郭艳玲, 韩建国. 北方农牧交错带几种禾本科牧草对土壤有机质的影响[J]. 内蒙古草业, 2006, 18: 7-9. [75] 邰继承, 张宏宇, 杨恒山, 等. 播种方式对紫花苜蓿+无芒雀麦人工草地土壤剖面养分分布的影响[J]. 内蒙古民族大学学报(自然科学版), 2009, 24: 392-396. [76] 张仁平, 于磊, 鲁为华, 等. 混播草地地上生物量与土壤主要养分变化的关系研究[J]. 新疆农业科学, 2009, 46: 592-596. [77] Ma Z, Wood C W, Bransby D I. Soil management impacts on soil carbon sequestration by switchgrass[J]. Biomass & Bioenergy, 2000, 18: 469-477. [78] 展争艳, 李小刚, 张德罡, 等. 利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响[J]. 土壤学报, 2005, 42: 777-782. [79] 张法伟, 李英年, 汪诗平, 等. 青藏高原高寒草甸土壤有机质、全氮和全磷含量对不同土地利用格局的响应[J]. 中国农业气象, 2009, 3: 323-326. [80] 侯向阳, 尹燕亭, 丁勇. 中国草原适应性管理研究现状与展望[J]. 草业学报, 2011, 20(2): 262-269. [81] Reich P B. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition[J]. Science, 2009, 326: 1399-1402. |
[1] | 柴华,方江平,温丁,李杰,何念鹏. 内蒙古灌丛化草地取样位置对评估土壤碳氮贮量的影响[J]. 草业学报, 2014, 23(6): 28-35. |
[2] | 王书转,郝明德,普琼,吴振海. 黄土区苜蓿人工草地群落生态与生产功能演替[J]. 草业学报, 2014, 23(6): 1-10. |
[3] | 陈祖刚,巴图娜存,徐芝英,胡云锋. 基于数码相机的草地植被盖度测量方法对比研究[J]. 草业学报, 2014, 23(6): 20-27. |
[4] | 徐沙,龚吉蕊,张梓榆,刘敏,王忆慧,罗亲普. 不同利用方式下草地优势植物的生态化学计量特征[J]. 草业学报, 2014, 23(6): 45-53. |
[5] | 李金辉,卢鑫,周志宇,赵萍,金茜,周媛媛. 不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J]. 草业学报, 2014, 23(6): 61-68. |
[6] | 陈骥,曹军骥,魏永林,刘吉宏,马扶林,陈迪超,冯嘉裕,夏瑶,岑燕. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6): 78-86. |
[7] | 李欣勇,王彦荣,贾存智. 施尿素对无芒隐子草草坪生长特性的影响[J]. 草业学报, 2014, 23(6): 136-141. |
[8] | 周向睿,岳利军,王锁民. 钠复合肥提高多浆旱生植物霸王幼苗生长及抗旱性[J]. 草业学报, 2014, 23(6): 142-147. |
[9] | 安勐颍,孙珊珊,濮阳雪华,韩烈保. 外源亚精胺调控草地早熟禾幼苗耐盐性的研究[J]. 草业学报, 2014, 23(6): 207-216. |
[10] | 闫钟清,齐玉春,董云社,彭琴,孙良杰,贾军强,曹丛丛,郭树芳,贺云龙. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014, 23(6): 279-292. |
[11] | 张志南,武高林,王冬,邓蕾,郝红敏,杨政,上官周平. 黄土高原半干旱区天然草地群落结构与土壤水分关系[J]. 草业学报, 2014, 23(6): 313-319. |
[12] | 罗黎鸣,苗彦军,武建双,潘影,土艳丽,余成群,赵延,赵贯锋,武俊喜. 拉萨河谷山地灌丛草地物种多样性随海拔升高的变化特征[J]. 草业学报, 2014, 23(6): 320-326. |
[13] | 王雪芳,王春梅,张金林,段丽婕,王锁民. 小花碱茅组织培养植株再生体系的建立[J]. 草业学报, 2014, 23(6): 355-360. |
[14] | 王春燕,张晋京,吕瑜良,王莉,何念鹏. 长期封育对内蒙古羊草草地土壤有机碳组分的影响[J]. 草业学报, 2014, 23(5): 31-39. |
[15] | 于雯超,宋晓龙,修伟明,张贵龙,赵建宁,杨殿林. 氮素添加对贝加尔针茅草原凋落物分解的影响[J]. 草业学报, 2014, 23(5): 49-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||