草业学报 ›› 2014, Vol. 23 ›› Issue (5): 31-39.DOI: 10.11686/cyxb20140504
王春燕1,2,张晋京3,吕瑜良1,王莉3,何念鹏2*
收稿日期:
2014-03-12
出版日期:
2014-10-20
发布日期:
2014-10-20
通讯作者:
Email:henp@igsnrr.ac.cn
作者简介:
王春燕(1990-),女,四川内江人,在读硕士。E-mail:wangcy14310@163.com
WANG Chun-yan1,2,ZHANG Jin-jing3,LV Yu-liang1,WANG Li3,HE Nian-peng2
Received:
2014-03-12
Online:
2014-10-20
Published:
2014-10-20
摘要:
封育是当前恢复和改良内蒙古草地的重要措施,也是实现草地固碳效应最有效的途径之一。本文利用内蒙古封育32年和自由放牧的羊草草地,分析了其土壤有机碳组分、土壤团聚体和土壤腐殖质组分碳含量的变化,并运用13C核磁共振波普法对土壤腐殖质的有机碳组分进行波普分析,探讨了长期封育对羊草草地土壤有机碳组分和土壤有机质结构的影响,期望能为科学地评估长期封育状况下草地固碳效应及其稳定性提供理论依据。实验结果表明:长期封育显著提高了草地土壤有机碳含量;在土壤有机碳组分中,除土壤微生物碳(MBC)含量降低外,其碳组分含量都相应增加。其中,易氧化有机碳(EOC)含量增加最为明显,长期封育草地是自由放牧草地土壤的4.53倍;长期封育显著提高了草地土壤0.25~2 mm团聚体所占比例及其有机碳含量;长期封育提高了草地土壤腐殖质中的胡敏酸碳(HAC)、胡敏素碳(HUC)含量和胡敏酸/腐殖质碳,降低了富里酸碳(FAC)的含量,封育草地土壤的HAC/FAC是自由放牧草地土壤的5.66倍。此外,长期封育草地土壤的脂族碳含量显著增加,芳香度相应增加,疏水碳/亲水碳增大。总之,长期封育不仅提高了草地土壤有机碳贮量,还能改善草地土壤结构、增强土壤有机碳的稳定性。
中图分类号:
王春燕,张晋京,吕瑜良,王莉,何念鹏. 长期封育对内蒙古羊草草地土壤有机碳组分的影响[J]. 草业学报, 2014, 23(5): 31-39.
WANG Chun-yan,ZHANG Jin-jing,LV Yu-liang,WANG Li,HE Nian-peng. Effects of long-term grazing exclusion on soil organic carbon fractions in the grasslands of Inner Mongolia[J]. Acta Prataculturae Sinica, 2014, 23(5): 31-39.
Reference: [1] Ma W H, Han M, Lin X, et al. Carbon storage in vegetation of grasslands in Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2006, 20(3): 192-195.[2] Xiao S S, Dong Y S, Qi Y C, et al. Advance in responses of soil Organic Carbon Pool of grassland ecosystem to human effects and global changes[J]. Advances in Earth Science, 2009, 24(10): 1138-1148.[3] Yan Y C, Wang X, Yang G X, et al. Review on mechanism of fine soil particles increase in enclosed grassland[J]. Journal of Desert Research, 2011, 31(5): 1162-1166.[4] Gao K, Zhu T X, Han G D. Impact of enclosure duration on plant functional and species diversity in Inner Mongolian grassland[J]. Acta Prataculturae Sinica, 2013, 22(6): 39-45.[5] Zheng C L, Cao Z L, Wang X, et al. Effects of enclosure on vegetations recovery in desertified grassland in Hulunbeir[J]. Science of Soil and Water Conservation, 2005, 3(3): 78-81.[6] Lin L, Li Y K, Zhang F W, et al. A study on carbon storage administration in alpine Kobresia humilis meadow in relation to influence of human activity[J]. Acta Prataculturae Sinica, 2013, 22(1): 308-314.[7] Zhao Y G, Zhao S W, Hua J, et al. Soil structural properties of enclosed steppe in the semiarid area[J]. Acta Agerctir Sinica, 2009, 17(1): 106-112.[8] Cheng J, Gao Y j. Variability of soil nutrient in enclosed grassland of Yunwu Mountain[J]. Acta Agerctir Sinica, 2007, 15(3): 273-277.[9] He N, Yu Q, Wu L, et al. Carbon and nitrogen store and storage potential as affected by land use in a Leymus chinensis grassland of northern China[J]. Soil Biology and Biochemistry, 2008, 40(12): 2952-2959.[10] He N, Wu L, Wang Y, et al. Changes in carbon and nitrogen in soil particle size fractions along a grassland restoration chronosequence in northern China[J]. Geoderma, 2009, 150(3): 302-308.[11] He N, Zhang Y, Dai J, et al. Land use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia[J]. Journal of Geographical Sciences, 2012, 22(5): 859-873.[12] Wu L, He N, Wang Y, et al. Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in grasslands of northern China[J]. Journal of Environmental Quality, 2008, 37(2): 663-668.[13] Yang C M, Ouyang Z, Yang L Z, et al. Organic carbon fractions and aggregate stability in an aquatic soil as influenced by agricultural land uses in the Northern China Plain[J]. Acta Ecologica Sinica, 2006, 26(12): 4148-4155.[14] Franzluebbers A J, Haney R L, Honeycutt C W, et al. Climatic influences on active fractions of soil organic matter[J]. Soil Biology and Biochemistry, 2001, 33(7): 1103-1111.[15] Li X H, Hao M D, Wang Z H, et al. Factors affecting soil organic carbon in cropland and their regulation[J]. Agricultural Research in the Arid Areas, 2008, 26(3): 176-181.[16] Wang S Q, Zhou C H, Li K R, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China[J]. Acta Geographica Sinica, 2000, 55(5): 533-544.[17] Rozhkov V, Wagner V, Kogut B, et al. Soil Carbon Estimates and Soil Carbon Map for Russia[C]. Laxenburg: International Institute for Applied Systems Analysis, 1996: 96-60. [18] Tian S Z, Ning T Y, Wang Y, et al. Effects of different tillage methods and straw-returning on soil organic carbon content in a winter wheat field[J]. Chinese Journal of Applied Ecology, 2010, (2): 373-378.[19] Zhan Z Y, Li X G, Zhang D G, et al. Effects of land use on organic C concentration and structural properties in alpine grassland soil[J]. Acta Pedologica Sinica, 2005, 42(5): 777-782.[20] Freixo A A, Machado P L O D A, Dos santos H P, et al. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil[J]. Soil and Tillage Research, 2002, 64(3): 221-230.[21] Ni J Z, Xu J M, Xie Z M, et al. Contents of WSOC and characteristics of its composition under different fertilization systems[J]. Acta Pedologica Sinica, 2003, 40(5): 724-730.[22] Kaiser K, Zech W. Competitive sorption of dissolved organic matter fractions to soils and related mineral phases[J]. Soil Society of America Journal, 1997, 61(1): 64-69.[23] Huang Z S, Fu Y H, Yu L F. Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest[J]. The Journal of Applied Ecology, 2012, 23(10): 2715-2720.[24] Sun C L, Liu G B, Ma H L, et al. Variation characteristics and fractions of oxidizable organic carbon in different sandy vegetation soil[J]. Acta Agrectir Sinica, 2012, 20(5): 863-869.[25] Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Crop and Pasture Science, 1995, 46(7): 1459-1466.[26] Cambardella C, Gajda A, Doran J, et al. Estimation of particulate and total organic matter by weight loss on Ignition[A]. In: Lal R, Kimble J M, Follett R F, et al. Assessment Methods for Soil Carbon[M]. Boca Raton, Florida: CRC Press, 2001: 349-359.[27] Dou S, Hua S Y. Effect of organic manure application on humic acid characteristics of soil by 13C-NMR spectroscopy[J]. Journal of Jilin Agricultural University, 1999, 21(4): 43-46.[28] He N P, Han X G, Yu G R. Carbon and nitrogen sequestration rate in long-term fenced grasslands in Inner Mongolia,China[J]. Acta Ecologica Sinica, 2011, 31(15): 4270-4276.[29] Lefroy R D, Blair G J, Strong W M. Changes in Soil Organic Matter with Cropping as Measured by Organic Carbon Ffractions and 13C Natural Isotope Abundance[M]. Plant Nutrition from Genetic Engineering to Field Practice, Springer, 1993: 551-554.[30] Zhang J J, Dou S. Advances in soil humin research[J]. Acta Ecologica Sinica, 2008, 28(3): 1229-1239.[31] Six J, Elliott E, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Society of America Journal, 1998, 62(5): 1367-1377.[32] Xu J B, Li C L, He Y Q, et al. Effect of fertilization on organic carbon content and fractionation of aggregates in upland red soil[J]. Acta Pedologica Sinica, 2007, 44(4): 675-682.[33] Jastrow J, Miller R, Boutton T. Carbon dynamics of aggregate associated organic matter estimated by carbon 13 natural abundance[J]. Soil Society of America Journal, 1996, 60(3): 801-807.[34] Tang X H, Luo Y J, Ren Z J, et al. Distribution characteristics of soil humus fractious stable carbon isotope natural abundance (δ13C)in paddy field under long-term ridge culture[J]. Chinese Journal of Applied Exology, 2011, 22(4): 985-991.[35] Cheng J, Wu G L, Zhao L P, et al. Cumulative effects of 20-year exclusion of livestock grazing on above and belowground biomass of typical steppe communities in arid areas of the Loess Plateau, China[J]. Plant Soil Environment, 2011, 57(1): 40-44.[36] Qiu L P, Wei X R, Zhang X C, et al. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland[J]. Plos One, 2013, 8(1): e55433. doi: 10.1371/journal.pone.0055433.[37] He N, Han X, Yu G, et al. Divergent changes in plant community composition under 3 decade grazing exclusion in continenta steppe[J]. Plos One, 2011, 6(11): e26506. doi: 10.1371/journal.pone.0026506.[38] Liu X L, He Y Q, Li C L, et al. Distribution and physical properties of soil water-stable aggregates in red soils different in land use and soil fertility[J]. Acta Pedologica Sinica, 2008, 45(3): 459-465.[39] Xie X J, Zhang J. Soil aggregates and fractal features under different styles of eucalyptus grandis plantations[J]. Journal of Soil and Water Conservation, 2012, 26(6): 175-179.[40] Six J, Paustian K, Elliott E, et al. Soil structure and organic matter I. Distribution of aggregate size classes and aggregate associated carbon[J]. Soil Society of America Journal, 2000, 64(2): 681-689.[41] Shi X M, Li X G, Long R J, et al. Dynamics of soil organic carbon and nitrogen associated with physically separated fractions in a grassland cultivation sequence in the Qinghai Tibetan Plateau[J]. Biology and Fertility of Soils, 2010, 46(2): 103-111.[42] Six J, Elliott E, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103.[43] Shang S Y, Jiang P K, Song Z L, et al. Composition and stability of organic carbon in the top soil under different forest types in subtropical China[J]. Acta Ecologica Sinica, 2013, 33(2): 416-424.[44] Baldock J, Oades J, Waters A, et al. Aspects of the chemical structure of soil organic materials as revealed by solid state 13C NMR spectroscopy[J]. Biogeochemistry, 1992, 16(1): 1-42.[45] Spaccini R, Mbagwu J, Conte P, et al. Changes of humic substances characteristics from forested to cultivated soils in Ethiopia[J]. Geoderma, 2006, 132(1): 9-19.[46] Yu X D, Tang X H, Lu J K, et al. Chemical composition and structure of humic acids from decomposited paddy straw residue[J]. Journal of Soil and Water Conservation, 2011, 25(1): 224-228.[47] Li G J, Lu Y Z, Li B G. Effects of different managements on soil humic acid structural features in chestnut soil on typical Leymus Chinensis steppe,Inner Mongolia,China[J]. Spectroscopy and Spectral Analysis, 2009, 6(6): 1508-1511.[48] Jiang Z P, Huang S M, Wei G P, et al. Effects of different no-tillage modes on rice yield and properties of paddy soil[J]. Chinese Agricultural Science Bulletin, 2007, 23(12): 362-365.[49] Li H B, Han X Z, Wang F, et al. Distribution of soil organic carbon and nitrogen in density fractions on black soil as affected by land use[J]. Acta Pedologica Sinica, 2008, 45(1): 112-119.[50] Dou S, Chen E F, Tan S W, et al. Structural characterization of humic acids from different sources[J]. Journal of Jilin Agricultural University, 1989, 11(2): 50-56.[51] Dou S, Chen E F. Effect of application of organic manures on the structural characteristics of humic acids in soils-the optical properties of has[J]. Acta Pedologica Sinica, 1995, 32(1): 41-49.[52] Wu J G, Xi S Q, Jiang Y, et al. Dynamic changes of physical and chemical properties of humic acid in soil applied with corn plant residues[J]. Chientia Agricultura Sinica, 1999, 32(1): 63-68.[53] Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 2001, 52(3): 345-353.[54] Sa R L, Hou X Y, Li J X, et al. Organic carbon storage in vegetation-soil systems of typical grazing degraded steppes[J]. Acta Prataculturae Sinica, 2013, 22(5): 18-26.[55] Steffens M, Kolbl A, Totsche K U, et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China)[J]. Geoderma, 2008, 143(1): 63-72.[56] He N, Zhang Y, Yu Q, et al. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe[J]. Ecosphere, 2011, 2(1): 1-10. 参考文献:[1] 马文红, 韩梅, 林鑫, 等. 内蒙古温带草地植被的碳储量[J]. 干旱区资源与环境, 2006, 20(3): 192-195.[2] 肖胜生, 董云社, 齐玉春, 等. 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展[J]. 地球科学进展, 2009, 24(10): 1138-1148.[3] 闫玉春, 王旭, 杨桂霞, 等. 退化草地封育后土壤细颗粒增加机理探讨及研究展望[J]. 中国沙漠, 2011, 31(5): 1162-1166.[4] 高凯, 朱铁霞, 韩国栋. 围封年限对内蒙古羊草-针茅典型草原植物功能群及其多样性的影响[J]. 草业学报, 2013, 22(6): 39-45.[5] 郑翠玲, 曹子龙, 王贤, 等. 围栏封育在呼伦贝尔沙化草地植被恢复中的作用[J]. 中国水土保持科学, 2005, 3(3): 78-81.[6] 林丽, 李以康, 张法伟, 等. 人类活动对高寒矮嵩草草甸的碳容管理分析[J]. 草业学报, 2013, 22(1): 308-314.[7] 赵勇钢, 赵世伟, 华娟, 等. 半干旱典型草原区封育草地土壤结构特征研究[J]. 草地学报, 2009, 17(1): 106-112.[8] 程杰, 高亚军. 云雾山封育草地土壤养分变化特征[J]. 草地学报, 2007, 15(3): 273-277.[9] He N, Yu Q, Wu L, et al. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China[J]. Soil Biology and Biochemistry, 2008, 40(12): 2952-2959.[10] He N, Wu L, Wang Y, et al. Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China[J]. Geoderma, 2009, 150(3): 302-308.[11] He N, Zhang Y, Dai J, et al. Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia[J]. Journal of Geographical Sciences, 2012, 22(5): 859-873.[12] Wu L, He N, Wang Y, et al. Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in grasslands of northern China[J]. Journal of Environmental Quality, 2008, 37(2): 663-668.[13] 杨长明, 欧阳竹, 杨林章, 等. 农业土地利用方式对华北平原土壤有机碳组分和团聚体稳定性的影响[J]. 生态学报, 2006, 26(12): 4148-4155.[14] Franzluebbers A J, Haney R L, Honeycutt C W, et al. Climatic influences on active fractions of soil organic matter[J]. Soil Biology and Biochemistry, 2001, 33(7): 1103-1111.[15] 李小涵, 郝明德, 王朝辉, 等. 农田土壤有机碳的影响因素及其研究[J]. 干旱地区农业研究, 2008, 26(3): 176-181.[16] 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 2000, 55(5): 533-544.[17] Rozhkov V, Wagner V, Kogut B, et al. Soil Carbon Estimates and Soil Carbon Map for Russia[C]. Laxenburg: International Institute for Applied Systems Analysis, 1996: 96-60. [18] 田慎重, 宁堂原, 王瑜, 等. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J]. 应用生态学报, 2010, (2): 373-378.[19] 展争艳, 李小刚, 张德罡, 等. 利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响[J]. 土壤学报, 2005, 42(5): 777-782.[20] Freixo A A, Machado P L O D A, Dos santos H P, et al. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil[J]. Soil and Tillage Research, 2002, 64(3): 221-230.[21] 倪进治, 徐建民, 谢正苗, 等. 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J]. 土壤学报, 2003, 40(5): 724-730.[22] Kaiser K, Zech W. Competitive sorption of dissolved organic matter fractions to soils and related mineral phases[J]. Soil Society of America Journal, 1997, 61(1): 64-69.[23] Huang Z S, Fu Y H, Yu L F. Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest[J]. The Journal of Applied Ecology, 2012, 23(10): 2715-2720.[24] 孙彩丽, 刘国彬, 马海龙, 等. 不同沙生植被土壤易氧化有机碳组分及其含量的差异[J]. 草地学报, 2012, 20(5): 863-869.[25] Blair G J, Lefroy R D, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Crop and Pasture Science, 1995, 46(7): 1459-1466.[26] Cambardella C, Gajda A, Doran J, et al. Estimation of particulate and total organic matter by weight loss-on-Ignition[A]. In: Lal R, Kimble J M, Follett R F, et al. Assessment Methods for Soil Carbon[M]. Boca Raton, Florida: CRC Press, 2001: 349-359.[27] 窦森, 华士英. 用13C-核磁共振方法研究有机肥料对胡敏酸结构特征的影响[J]. 吉林农业大学学报, 1999, 21(4): 43-46.[28] 何念鹏, 韩兴国, 于贵瑞. 长期封育对不同类型草地碳储量及其固持速率的影响[J]. 生态学报, 2011, 31(15): 4270-4276.[29] Lefroy R D, Blair G J, Strong W M. Changes in Soil Organic Matter with Cropping as Measured by Organic Carbon Ffractions and 13C Natural Isotope Abundance[M]. Plant Nutrition-from Genetic Engineering to Field Practice, Springer, 1993: 551-554.[30] 张晋京, 窦森. 土壤胡敏素研究进展[J]. 生态学报, 2008, 28(3): 1229-1239.[31] Six J, Elliott E, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Society of America Journal, 1998, 62(5): 1367-1377.[32] 徐江兵, 李成亮, 何园球, 等. 不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J]. 土壤学报, 2007, 44(4): 675-682.[33] Jastrow J, Miller R, Boutton T. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance[J]. Soil Society of America Journal, 1996, 60(3): 801-807.[34] 唐晓红, 罗友进, 任振江, 等. 长期垄作稻田腐殖质稳定碳同位素丰度 (δ~(13) C)分布特征[J]. 应用生态学报, 2011, 22(4): 985-991.[35] Cheng J, Wu G L, Zhao L P, et al. Cumulative effects of 20-year exclusion of livestock grazing on above- and belowground biomass of typical steppe communities in arid areas of the Loess Plateau, China[J]. Plant Soil Environment, 2011, 57(1): 40-44.[36] Qiu L P, Wei X R, Zhang X C, et al. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland[J]. Plos One, 2013, 8(1): e55433. doi: 10.1371/journal.pone.0055433.[37] He N, Han X, Yu G, et al. Divergent changes in plant community composition under 3-decade grazing exclusion in continenta steppe[J]. Plos One, 2011, 6(11): e26506. doi: 10.1371/journal.pone.0026506.[38] 刘晓利, 何园球, 李成亮, 等. 不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征[J]. 土壤学报, 2008, 45(3): 459-465.[39] 谢贤健, 张继. 巨桉人工林下土壤团聚体稳定性及分形特征[J]. 水土保持学报, 2012, 26(6): 175-179.[40] Six J, Paustian K, Elliott E, et al. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Society of America Journal, 2000, 64(2): 681-689.[41] Shi X M, Li X G, Long R J, et al. Dynamics of soil organic carbon and nitrogen associated with physically separated fractions in a grassland-cultivation sequence in the Qinghai-Tibetan Plateau[J]. Biology and Fertility of Soils, 2010, 46(2): 103-111.[42] Six J, Elliott E, Paustian K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103.[43] 商素云, 姜培坤, 宋照亮, 等. 亚热带不同林分土壤表层有机碳组成及其稳定性[J]. 生态学报, 2013, 33(2): 416-424.[44] Baldock J, Oades J, Waters A, et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy[J]. Biogeochemistry, 1992, 16(1): 1-42.[45] Spaccini R, Mbagwu J, Conte P, et al. Changes of humic substances characteristics from forested to cultivated soils in Ethiopia[J]. Geoderma, 2006, 132(1): 9-19.[46] 于孝东, 唐晓红, 吕家恪, 等. 稻草腐解过程中形成胡敏酸的组成和结构研究[J]. 水土保持学报, 2011, 25(1): 224-228.[47] 李光军, 吕贻忠, 李保国. 内蒙古羊草草原不同管理措施对栗钙土胡敏酸光谱特性的影响[J]. 光谱学与光谱分析, 2009, 6(6): 1508-1511.[48] 江泽普, 黄绍民, 韦广泼, 等. 不同免耕模式对水稻产量及土壤理化性状的影响[J]. 中国农学通报, 2007, 23(12): 362-365.[49] 李海波, 韩晓增, 王风, 等. 不同土地利用下黑土密度分组中碳, 氮的分配变化[J]. 土壤学报, 2008, 45(1): 112-119.[50] 窦森, 陈恩凤, 谭世文, 等. 不同来源胡敏酸的结构表征[J]. 吉林农业大学学报, 1989, 11(2): 50-56.[51] 窦森, 陈恩凤. 施用有机肥料对土壤胡敏酸结构特征的影响: 胡敏酸的光学性质[J]. 土壤学报, 1995, 32(1): 41-49.[52] 吴景贵, 席时权, 姜岩, 等. 玉米植株残体还田后土壤胡敏酸理化性质变化的动态研究[J]. 中国农业科学, 1999, 32(1): 63-68.[53] Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover[J]. European Journal of Soil Science, 2001, 52(3): 345-353.[54] 萨茹拉, 候向阳, 李金祥, 等. 不同放牧退化程度典型草原植被-土壤系统的有机碳储量[J]. 草业学报, 2013, 22(5): 18-26.[55] Steffens M, Kolbl A, Totsche K U, et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China)[J]. Geoderma, 2008, 143(1): 63-72.[56] He N, Zhang Y, Yu Q, et al. Grazing intensity impacts soil carbon and nitrogen storage of continental steppe[J]. Ecosphere, 2011, 2(1): 1-10. |
[1] | 柴华,方江平,温丁,李杰,何念鹏. 内蒙古灌丛化草地取样位置对评估土壤碳氮贮量的影响[J]. 草业学报, 2014, 23(6): 28-35. |
[2] | 徐沙,龚吉蕊,张梓榆,刘敏,王忆慧,罗亲普. 不同利用方式下草地优势植物的生态化学计量特征[J]. 草业学报, 2014, 23(6): 45-53. |
[3] | 李金辉,卢鑫,周志宇,赵萍,金茜,周媛媛. 不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J]. 草业学报, 2014, 23(6): 61-68. |
[4] | 陈骥,曹军骥,魏永林,刘吉宏,马扶林,陈迪超,冯嘉裕,夏瑶,岑燕. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6): 78-86. |
[5] | 闫钟清,齐玉春,董云社,彭琴,孙良杰,贾军强,曹丛丛,郭树芳,贺云龙. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014, 23(6): 279-292. |
[6] | 张志南,武高林,王冬,邓蕾,郝红敏,杨政,上官周平. 黄土高原半干旱区天然草地群落结构与土壤水分关系[J]. 草业学报, 2014, 23(6): 313-319. |
[7] | 于雯超,宋晓龙,修伟明,张贵龙,赵建宁,杨殿林. 氮素添加对贝加尔针茅草原凋落物分解的影响[J]. 草业学报, 2014, 23(5): 49-60. |
[8] | 卢虎,李显刚,姚拓,蒲小鹏. 高寒生态脆弱区“黑土滩”草地植被与土壤微生物数量特征研究[J]. 草业学报, 2014, 23(5): 214-222. |
[9] | 杨阳,刘秉儒,宋乃平,杨新国. 人工柠条灌丛密度对荒漠草原土壤养分空间分布的影响[J]. 草业学报, 2014, 23(5): 107-115. |
[10] | 高海宁,马国泰,李彩霞,陈勇,宋涛,张勇,焦扬. 菌剂对铬(Ⅵ)污染土壤中坪草幼苗生理生化的影响[J]. 草业学报, 2014, 23(4): 189-194. |
[11] | 马琳雅,崔霞,冯琦胜,梁天刚. 2001-2011年甘南草地植被覆盖度动态变化分析[J]. 草业学报, 2014, 23(4): 1-9. |
[12] | 王翀,林慧龙,何兰,曹坳程. 紫茎泽兰潜在分布对气候变化响应的研究[J]. 草业学报, 2014, 23(4): 20-30. |
[13] | 邓少虹,林明月,李伏生,苏以荣,刘坤平. 施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响[J]. 草业学报, 2014, 23(4): 262-268. |
[14] | 吴强盛,袁芳英,费永俊,李莉,黄咏明. 菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响[J]. 草业学报, 2014, 23(4): 269-275. |
[15] | 王杰,李刚,修伟明,赵建宁,王慧,杨殿林. 贝加尔针茅草原土壤微生物功能多样性对氮素和水分添加的响应[J]. 草业学报, 2014, 23(4): 343-350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||