Reference: [1]Niu J P, Zhang J W, Wang W T, et al. Cloning and sequence analysis of terminase gene of glycoalkaloid biosynthesis metabolismic pathway in potato[J]. Acta Prataculturae Sinica, 2012, 21(3): 106-116. [2]Fan Sh J, Wang D, Zhang J L, et al. Effects of tillage strategies on the topsoil water content and the yield of potato[J]. Acta Prataculturae Sinica, 2012, 21(2): 271-279 [3]Wang D, Li F D, Zhang Y D, et al. Mixed silage of potato pulp and corn straw affects growth performance ruminant environments and blood biochemical parameters of mutton sheep[J]. Acta Prataculturae Sinica, 2012, 21(5): 47-54. [4]Stevenson W R, Loria R, Franc G D, et al. Compendium of Potato Diseases (2nd)[M]. Minnesota: APS Press, 2004: 25-26. [5]Otazu V, Boerema G H, Mooi J C, et al. Possible geographical origin of Phoma exigua var. foveata, the principal causal organism of potato gangrene[J]. Potato Research, 1979, 22(4): 333-338. [6]National Agricultural Technology Extension and Service Center. Phytosanitary pests illustrations[M]. Beijing: China Agriculture Press, 2001:396-397. [7]Boerema G H, de Gruyter J, Noordeloos M E, et al. Phoma Identification Manual, Differentiation of Specific and Infra-specific Taxa in Culture[M]. Wallingford: CABI Publishing, 2004: 220. [8]Langerfeld E. The fungus Phoma exiguavar. foveataas a cause of potato rot[J]. Aktuellesaus Ackerund Pflanzenbau, 1979, 8:42-46. [9]Langerfeld E. Phoma exiguavar. foveata, cause of a tuber rot of potatoes[J]. Gesunde Pflanzen, 1980, 32(4): 92-95. [10]EPPO. Phoma exiguavar. foveatadata sheets on quarantinepests[A]. Prepared by CABI and EPPO for the European Union[M]. Cambridge: Quarantine pests for Europe University Press, 1997: 865-871. [11]Jiang H X, Yang Ch D, Xue L, et al. Identification and biological characteristics of the pathogen causing the potato gangrene in Gansu Province[J]. Acta Prataculturae Sinica, 2013, 22(2): 123-131. [12]Stockwell D R B. The GARP modelling system: Problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information System, 1999, 13(2): 143-158. [13]Mau-Crimmins T M, Schussman H R, Geiger E L. Can the invaded range of a species be predicted sufficiently using only native-range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States[J]. Ecological Modelling, 2006, 193: 736-746. [14]Zhou G L, Chen C, Ye J, et al. Predicting potential ecological distribution of Bactrocera dorsalis in China using GARP ecological niche modeling[J]. Acta Ecologica Sinica, 2007, 27(8): 3362-3369. [15]Li H M, Han H X, Xue D Y. Prediction of potential geographic distribution areas for the pine bark scale,Matsucoccus matsumurae (Kuwana) (Homoptera: Margarodidae) in China using GARP modeling system[J]. Acta Entomologica Sinica, 2005, 48(1): 95-100. [16]Wang R, Wang Y Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora(Asteraceae) in China[J]. Diversity and Distributions, 2006, 12: 397-408. [17]Liu J Y, Chen J Y, Li Z H, et al. Prediction of potential distributions of Grapholitha prunivora (Walsh) in China, based on GARP modeling methods[J]. Plant Protection, 2008, 34(5): 39-43. [18]Huang X L, Li W Sh, Chu W J. Prediction of potential geographic distribution areas for three mango weevils in China using GARP modeling system[J]. Journal of Environmental Entomology, 2009, 31(4): 306- 310. [19]Li S C,Gao J B. Prediction of spatial distribution of eupatorium adenophorum sprengel based on GARP model: a case study in longitudinal l range-gorge reg ion of yunnan prov ince [J]. Chinese Journal of Ecology, , 2008, 27(9): 1531-1536. [20]Zhong G P, Shen W J,Wan F H ,et al. Prediction with Solanum rostratum potential distribution with GARP niche model in China.[J]. Chinese Journal of Ecology, 2009, 28(1): 162-166. [21]Fan J A, Zhao X Q. Agricultural research system and method exotic pest risk assessment[J]. Plant Quarantine, 1997, 11(2): 75-81. [22]Wang Y P, Wu S A, Zhang R Z. Pest risk analysis of a new iwasive pest Phenacnc}us sniennnsis to China.[J]. Chinese Bulletin of Entomology, 2009, 46(1): 101-106. [23]Mosch, W H M, Mooi J C. A chemical method to identify tuber rot in potato caused by Phoma exiguavar. foveata[J]. Netherlands Journal of Plant Pathology, 1975, 81(2): 86-88. [24]Cooke I R, Logan C. Further experiments with foilar fungicide sprays for the control of potato gangrene[J]. Recond Agricultrual Research, 1984, 32: 43-46. [25]Carnegie S F, Hide G A, Ruthven A D, et al. Control of potato gangrene by thiabendazole in relation to time of harvest after haulm destruction and site of production[J]. Annals of Applied Biology, 1988, 113: 471-481. [26]Copeland R B, Logan C. Control of tuber diseases, especially gangrene, with benomyl thiabendazole and other fungicides[J]. Potato Research, 1975, 18(2): 178-188. [27]Stochwell D R B, Peterson A T. Effects of sample size on accuracy of species distribution models[J]. Ecological Modelling, 2002, 148(1): 1-13. [28]Macdonald J E, White G P, Cote M J. Differentiation of Phoma foveatafrom P. exiguausing a RAPD generated PCR-RFLP marker[J]. European Journal of Plant Pathology, 2000, 106: 67-75. [29]Bang U. Screening of natural plant volatiles to control the potato (Solanum tuberosum) pathogens Helminthosporium solani, Fusarium solani, Phoma foveataand Rhizoctonia solani[J]. Potato Research, 2007, 50(2): 185-203. 参考文献: [1]牛继平, 张金文, 王旺田, 等. 马铃薯SGAs合成代谢途径末端SGT酶基因克隆及序列分析[J]. 草业学报, 2012, 21(3): 106-116. [2]范士杰, 王蒂, 张俊莲, 等. 不同栽培方式对马铃薯土壤水分状况和产量的影响[J]. 草业学报, 2012, 21(2): 271-279 [3]王典, 李发弟, 张养东, 等. 马铃薯淀粉渣-玉米秸秆混合青贮料对肉羊生产性能\廇胃内环境和血液生化指标的影响[J]. 草业学报, 2012, 21(5): 47-54. [4]Stevenson W R, Loria R, Franc G D,et al. Compendium of Potato Diseases (2nd)[M]. Minnesota: APS Press, 2004: 25-26. [5]Otazu V, Boerema G H, Mooi J C,et al. Possible geographical origin of Phoma exigua var. foveata, the principal causal organism of potato gangrene[J]. Potato Research, 1979, 22(4): 333-338. [6]全国农业技术推广服务中心. 植物检疫性有害生物图鉴[M]. 北京: 中国农业出版社, 2001: 396-397. [7]Boerema G H, de Gruyter J, Noordeloos M E,et al. Phoma Identification Manual, Differentiation of Specific and Infra-specific Taxa in Culture[M]. Wallingford: CABI Publishing, 2004: 220. [8]Langerfeld E. The fungus Phoma exigua var. foveata as a cause of potato rot[J]. Aktuellesaus Ackerund Pflanzenbau, 1979, 8: 42-46. [9]Langerfeld E. Phoma exigua var. foveata, cause of a tuber rot of potatoes[J]. Gesunde Pflanzen, 1980, 32(4): 92-95. [10]EPPO. Phoma exigua var. foveata data sheets on quarantinepests[A]. Prepared by CABI and EPPO for the European Union[M]. Cambridge: Quarantine pests for Europe University Press, 1997: 865-871. [11]姜红霞, 杨成德, 薛莉, 等. 甘肃省马铃薯坏疽病鉴定及其病原生物学特性研究[J]. 草业学报, 2013, 22(2): 123-131. [12]Stockwell D R B. The GARP modelling system: Problems and solutions to automated spatial prediction[J]. International Journal of Geographical Information System, 1999, 13(2): 143-158. [13]Mau-Crimmins T M, Schussman H R, Geiger E L. Can the invaded range of a species be predicted sufficiently using only native-range data? Lehmann lovegrass (Eragrostis lehmanniana) in the southwestern United States[J]. Ecological Modelling, 2006, 193: 736-746. [14]周国梁, 陈晨, 叶军, 等. 利用GARP生态位模型预测桔小实蝇(Bactrocera dorsalis)在中国的适生区域[J]. 生态学报, 2007, 27(8): 3362-3369. [15]李红梅, 韩红香, 薛大勇. 利用GARP生态位模型预测日本松干蚧在中国的地理分布[J]. 昆虫学报, 2005, 48(1): 95-100. [16]Wang R, Wang Y Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China[J]. Diversity and Distributions, 2006, 12: 397-408. [17]刘静远, 陈洪俊, 李志红, 等. 基于GARP的杏小食心虫在中国的潜在分布研究[J]. 植物保护, 2008, 34(5): 39-43. [18]黄小玲, 李伟丰, 楚文静. 基于GARP的三种芒果象甲在中国的适生性分析[J]. 环境昆虫学报, 2009, 31(4): 306 -310. [19]李双成, 高江波. 基于GARP模型的紫茎泽兰空间分布—以云南纵向岭谷为例[J]. 生态学杂志, 2008, 27(9): 1531-1536. [20]钟艮平, 沈文君, 万方浩, 等. 用GARP生态位模型预测刺萼龙葵在中国潜在分布区[J]. 生态学杂志, 2009, 28(1): 162-166. [21]范京安, 赵学谦. 农作物外来有害生物风险评估体系与方法研究[J]. 植物检疫, 1997, 11(2): 75-81. [22]王艳平, 武三安, 张润志. 入侵害虫扶桑绵粉蚧在中国风险分析[J]. 昆虫知识, 2009, 46(1): 101-106. [23]Mosch, W H M, Mooi J C. A chemical method to identify tuber rot in potato caused by Phoma exigua var. foveata[J]. Netherlands Journal of Plant Pathology, 1975, 81(2): 86-88. [24]Cooke I R, Logan C. Further experiments with foilar fungicide sprays for the control of potato gangrene[J]. Recond Agricultrual Research, 1984, 32: 43-46. [25]Carnegie S F, Hide G A, Ruthven A D,et al. Control of potato gangrene by thiabendazole in relation to time of harvest after haulm destruction and site of production[J]. Annals of Applied Biology, 1988, 113: 471-481. [26]Copeland R B, Logan C. Control of tuber diseases, especially gangrene, with benomyl thiabendazole and other fungicides[J]. Potato Research, 1975, 18(2): 178-188. [27]Stochwell D R B, Peterson A T. Effects of sample size on accuracy of species distribution models[J]. Ecological Modelling, 2002, 148(1): 1-13. [28]Macdonald J E, White G P, Cote M J. Differentiation of Phoma foveata from P. exigua using a RAPD generated PCR-RFLP marker[J]. European Journal of Plant Pathology, 2000, 106: 67-75. [29]Bang U. Screening of natural plant volatiles to control the potato (Solanum tuberosum) pathogens Helminthosporium solani, Fusarium solani, Phoma foveata and Rhizoctonia solani[J]. Potato Research, 2007, 50(2): 185-203.
|