[1] Wantzen K M, Rothhaupt K O, Mörtl M, et al. Ecological Effects of Water-Level Fluctuations in Lakes. Hydrobiologia, 2008, 613(1): 1-4. [2] Chen F Q, Xie Z Q.Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecology, 2007, 191(1): 67-75. [3] Zhu N N, Guo Q S, Qin A L, et al. Plant community dynamics in the hydro-fluctuation belt of the Three Gorges Reservoir at the Zigui and Wushan Section, East of Fengjie County, China. Acta Ecologica Sinica, 2015, 35(23): 7852-7867. 朱妮妮, 郭泉水, 秦爱丽, 等. 三峡水库奉节以东秭归和巫山段消落带植物群落动态特征. 生态学报, 2015, 35(23): 7852-7867. [4] Jie S L, Fan D Y, Xie Z Q, et al. Features of leaf photosynthesis and leaf nutrient traits in reservoir riparian region of Three Gorges Reservoir, China. Acta Ecologica Sinica, 2012, 32(6): 1723-1733. 揭胜麟, 樊大勇, 谢宗强, 等. 三峡水库消落带植物叶片光合与营养性状特征. 生态学报, 2012, 32(6): 1723-1733. [5] Teng M J, Zeng L X, Xiao W F, et al. Research progress on remote sensing of ecological and environmental changes in the Three Gorges Reservoir area, China. Chinese Journal of Applied Ecology, 2014, 25(12): 3683-3693. 滕明君, 曾立雄, 肖文发, 等. 长江三峡库区生态环境变化遥感研究进展. 应用生态学报, 2014, 25(12): 3683-3693. [6] Dong J, Luo L L, Yang D Y, et al. Characteristics of soil degradation of purple soil sloping field in the Three Gorges Reservoir Area: impoverishment of soil nutrient. Geography and Geo-Information Science, 2007, 23(6): 58-64. 董杰, 罗丽丽, 杨达源, 等. 三峡库区紫色土坡地土壤退化特征: 土壤养分贫瘠化. 地理与地理信息科学, 2007, 23(6): 58-64. [7] Fan D Y, Xiong G M, Zhang A Y, et al. Effect of water-lever regulation on species selection for ecological restoration practice in the water-level fluctuation zone of Three Gorges Reservoir. Chinese Journal of Plant Ecology, 2015, 39(4): 416-432. 樊大勇, 熊高明, 张爱英, 等. 三峡库区水位调度对消落带生态修复中物种筛选实践的影响. 植物生态学报, 2015, 39(4): 416-432. [8] Ma L M, Tang Y P, Zhang M, et al. Evaluation of adaptability of plants in Water-Fluctuation-Zone of the Three Gorges Reservoir. Acta Ecologica Sinica, 2009, 29(4): 1885-1892. 马利民, 唐燕萍, 张明, 等. 三峡库区消落区几种两栖植物的适生性评价. 生态学报, 2009, 29(4): 1885-1892. [9] Wang H F, Zeng B, Li Y, et al. Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir Region, China. Chinese Journal of Plant Ecology, 2008, 32(5): 977-984. 王海锋, 曾波, 李娅, 等. 长期完全水淹对4种三峡库区岸生植物存活及恢复生长的影响. 植物生态学报, 2008, 32(5): 977-984. [10] Hong M, Guo Q S, Nie B H, et al. Responses of Cynodon dactylon population in hydro-fluctuation belt of Three Gorges Reservoir area to flooding-drying habitat change. Chinese Journal of Applied Ecology, 2011, 22(11): 2829-2835. 洪明, 郭泉水, 聂必红, 等. 三峡库区消落带狗牙根种群对水陆生境变化的响应. 应用生态学报, 2011, 22(11): 2829-2835. [11] Li Z J, Xiong G M, Deng L Q, et al. Dynamics of antioxidant enzyme activities in roots of Cynodon dactylon and Hemarthria altissima recovering from annual flooding. Acta Ecologica Sinica, 2013, 33(11): 3362-3369. 李兆佳, 熊高明, 邓龙强, 等. 狗牙根与牛鞭草在三峡库区消落带水淹结束后的抗氧化酶活力. 生态学报, 2013, 33(11): 3362-3369. [12] Han W J, Bai L L, Li C X.Effects of flooding on photosynthesis, growth and nutrient content of Cynodon dactylon. Acta Prataculturae Sinica, 2016, 25(5): 49-59. 韩文娇, 白林利, 李昌晓. 水淹胁迫对狗牙根光合、生长及营养元素含量的影响. 草业学报, 2016, 25(5): 49-59. [13] Li Q, Song L, Wang S M, et al. Influence of water level on nutritional characteristics of Cynodon dactylon population in water-level-fluctuating zone of the Three Gorges Reservoir. Ecological Science, 2015, 34(4): 15-20. 李强, 宋力, 王书敏, 等. 水位变化对三峡库区消落带狗牙根种群营养特征的影响. 生态科学, 2015, 34(4): 15-20. [14] Nair A, Ngouajio M.Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology, 2012, 58(58): 45-55. [15] Iqbal J, Hu R, Feng M, et al. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: a case study at Three Gorges Reservoir Area, South China. Agriculture Ecosystems & Environment, 2010, 137(3/4): 294-307. [16] Makarov M I, Malysheva T I, Maslov M N, et al. Determination of carbon and nitrogen in microbial biomass of southern-Taiga soils by different methods. Eurasian Soil Science, 2016, 49(6): 685-695. [17] Sparling G P.Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Research, 1992, 30(2): 195-207. [18] Vance E D, Brookes P C, Jenkinson D S.An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 1987, 19(6): 703-707. [19] Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 1985, 17(6): 837-842. [20] Brookes P C, Powlson D S, Jenkinson D S.Phosphorus in the soil microbial biomass. Soil Biology & Biochemistry, 1984, 16(2): 169-175. [21] Blume H P, Stahr K, Leinweber P. Bodenkundliches Praktikum. Spektrum Akademischer Verlag, 2010. [22] China Soil Science Society of Agricultural Chemistry. General Methods for Soil Agricultural Chemistry Analysis. Beijing: Science Press, 1983. 中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法. 北京: 科学出版社, 1983. [23] Wu J S.Soil Microbial Biomass Determination Method and Its Application. Beijing: Meteorological Press, 2006. 吴金水. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006. [24] Chen F Q, Huang Y Z, Zeng X.Biological response of Cynodon dactylon vegetative propagule to simulated flooding. Journal of Tropical and Subtropical Botany, 2010, 18(1): 15-20. 陈芳清, 黄友珍, 曾旭. 狗牙根营养繁殖体对模拟水淹的生物学响应. 热带亚热带植物学报, 2010, 18(1): 15-20. [25] Li Q H, Liu S P, Zhi C Y, et al. Adaptation mechanism of three herbs in the water-level-fluctuation-zone of reservoir to complete submergence. Journal of Tropical and Subtropical Botany, 2013, 21(5): 459-465. 李秋华, 刘送平, 支崇远, 等. 三种水库消落带草本植物对完全水淹的适应机制研究. 热带亚热带植物学报, 2013, 21(5): 459-465. [26] Kandeler E, Tscherko D, Spiegel H.Long-term monitoring of microbial biomass, N mineralisation and enzyme activities of a Chernozem under different tillage management. Biology and Fertility of Soils, 1999, 28(4): 343-351. [27] Boegman L, Ivey G N, Imberger J.Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China. Agricultural Water Management, 2015, 159(2): 176-184. [28] Wang X P, Pan Y X, Zhang Y F, et al. Temporal stability analysis of surface and subsurface soil moisture for a transect in artificial revegetation desert area, China. Journal of Hydrology, 2013, 507(11): 100-109. [29] Yu Y, Jia Z Q, Zhu Y J, et al. Effects of plantation on the improving of soil properties in vegetation restoration area of high-cold sandy land. Scientia Silvae Sinicae, 2013, 49(11): 9-15. 于洋, 贾志清, 朱雅娟, 等. 高寒沙地植被恢复区乌柳人工防护林对土壤的影响. 林业科学, 2013, 49(11): 9-15. [30] Sparling G P, Pankhurst C, Doube B M, et al. Soil microbial biomass activity and nutrient cycling an indicator of soil health//Biological Indicators of Soil Health. CAB International, 1997: 97-119. [31] Filep T, Draskovits E, Szabó J, et al. The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary. Environmental Monitoring & Assessment, 2015, 187(7): 1-12. [32] Chai X S, Lei L G, Jiang C S, et al. Characteristics and influencing factors of soil microbial biomass carbon and nitrogen in drawdown area in the Three Gorges Reservoir. Environmental Science, 2016, 37(8): 2979-2988. 柴雪思, 雷利国, 江长胜, 等. 三峡库区典型消落带土壤微生物生物量碳、氮的变化特征及其影响因素探讨. 环境科学, 2016, 37(8): 2979-2988. [33] Devi N B, Yadava P S.Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Applied Soil Ecology, 2006, 31(3): 220-227. [34] Speir T W, Cowling J C, Sparling G P, et al. Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low fertility soil under pasture. Soil Biology & Biochemistry, 1986, 18(4): 377-382. [35] Jiang Y L, Zhao T, Yan H, et al. Effect of different land uses on soil microbial biomass carbon, nitrogen and phosphorus in three vegetation zones on Loess Hilly Area. Bulletin of Soil & Water Conservation, 2013, 33(6): 62-68. 蒋跃利, 赵彤, 闫浩, 等. 黄土丘陵区不同土地利用方式对土壤微生物量碳氮磷的影响. 水土保持通报, 2013, 33(6): 62-68. [36] Bolat I, Sensoy H, Ozer D.Short-term changes in microbial biomass and activity in soils under black locust trees (Robinia pseudoacacia L.) in the northwest of Turkey. Journal of Soils and Sediments, 2015, 15(11): 2189-2198. [37] Lei M, Li C X, Chen W, et al. Effects of different land use patterns on soil enzymes activities and chemical properties on riverbank slopes of the Three Gorges Reservoir. Scientia Silvae Sinicae, 2012, 48(11): 15-22. 雷明, 李昌晓, 陈伟, 等. 三峡水库岸坡系统不同用地类型对土壤酶活性和土壤化学性质的影响. 林业科学, 2012, 48(11): 15-22. [38] Ren Q S, Ma P, Li C X, et al. Evaluation of bacterial diversity under different herb vegetation types in the hydro-fluctuation zone of the Three Gorges Reservoir in China. Acta Ecologica Sinica, 2016, 36(11): 3261-3272. 任庆水, 马朋, 李昌晓, 等. 三峡库区消落带两种草本植被土壤细菌群落多样性. 生态学报, 2016, 36(11): 3261-3272. [39] Xu Y C, Shen Q R, Ran W.Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping. Acta Pedologica Sinica, 2002, 39(1): 83-90. 徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002, 39(1): 83-90. [40] Zhao T, Yan H, Jiang Y L, et al. Effects of vegetation types on soil microbial biomass C, N, P on the Loess Hilly Area. Acta Ecologica Sinica, 2013, 33(18): 5615-5622. 赵彤, 闫浩, 蒋跃利, 等. 黄土丘陵区植被类型对土壤微生物量碳氮磷的影响. 生态学报, 2013, 33(18): 5615-5622. [41] Liu L, Gundersen P, Zhang W, et al. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Scientific Reports, 2015, 10(1038): 14378-14388. [42] Yang Y J.Dynamic Changes of Soil Chemical Properties under Artificial Vegetations in the Hydro-fluctuation Zone of the Three Gorges Reservoir. Chongqing: Southwest University, 2014. 杨予静. 三峡库区消落带不同人工植被土壤化学性质动态变化. 重庆: 西南大学, 2014. [43] Li X Z, Qu Q H.Soil microbial biomass carbon and nitrogen in mongolian grassland. Acta Pedologica Sinica, 2002, 39(1): 91-98. 李香真, 曲秋皓. 蒙古高原草原土壤微生物量碳氮特征. 土壤学报, 2002, 39(1): 91-98. [44] Xue S, Liu G B, Dai Q H, et al. Effect of differ ent vegetation restor ation models on soil microbial biomass in eroded hilly Loess Plateau. Journal of Natural Resources, 2007, 22(1): 20-27. 薛萐, 刘国彬, 戴全厚, 等. 不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响. 自然资源学报, 2007, 22(1): 20-27. [45] Yang J J, An S S, Zhang H, et al. Effect of erosion on soil microbial biomass and enzyme activity in the Loess Hills. Acta Ecologica Sinica, 2015, 35(17): 5666-5674. 杨佳佳, 安韶山, 张宏, 等. 黄土丘陵区小流域侵蚀环境对土壤微生物量及酶活性的影响. 生态学报, 2015, 35(17): 5666-5674. [46] Wang F, Zhang J S, Gao P C, et al. Effects of application of different organic materials on soil microbiological properties and soil fertility in Weibei rainfed highland. Plant Nutrition and Fertilizer Science, 2011, 17(3): 702-709. 王芳, 张金水, 高鹏程, 等. 不同有机物料培肥对渭北旱塬土壤微生物学特性及土壤肥力的影响. 植物营养与肥料学报, 2011, 17(3): 702-709. [47] Wardle D A.Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biology and Biochemistry, 1998, 30(13): 1627-1637. [48] Breuer L, Huisman J A, Keller T, et al. Impact of a conversion from cropland to grassland on C and N storage and related soil properties: Analysis of a 60-year chronosequence. Geoderma, 2006, 133(1/2): 6-18. [49] Cleveland C C, Liptzin D.C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?. Biogeochemistry, 2007, 85(3): 235-252. [50] Wu Y, Jiang C S, Hao Q J, et al. Seasonal dynamics of soil active carbon pool in a purple paddy soil in southwest China. Environmental Science, 2012, 33(8): 2804-2809. 吴艳, 江长胜, 郝庆菊. 西南地区紫色水稻土活性碳库的季节动态. 环境科学, 2012, 33(8): 2804-2809. [51] Li F, Zhang W L, Liu J, et al. Soil microbial activities in the water-level-fluctuating zone of Three Gorges Reservoir area during discharging period. Chinese Journal of Ecology, 2013, 32(4): 968-974. 李飞, 张文丽, 刘菊, 等. 三峡水库泄水期消落带土壤微生物活性. 生态学杂志, 2013, 32(4): 968-974. [52] Arunachalam A, Pey H N.Ecosystem restoration of jhum fallows in northeast india: microbial C and N along altitudinal and successional gradients. Restoration Ecology, 2003, 11(11): 168-173. [53] Jenkinson D S, Powlson D S.The effects of biocidal treatments on metabolism in soil-V: A method for measuring soil biomass. Soil Biology & Biochemistry, 1976, 8(3): 167-177. [54] Jia G M, He L, Cheng H, et al. Ecological stoichiometry characteristics of soil microbial biomass carbon, nitrogen and phosphorus under different vegetation covers in three gorges reservoir area. Research of Soil and Water Conservation, 2016, 23(4): 23-27. 贾国梅, 何立, 程虎, 等. 三峡库区不同植被土壤微生物量碳氮磷生态化学计量特征. 水土保持研究, 2016, 23(4): 23-27. [55] Peng P Q, Wu J S, Huang D Y, et al. Microbial biomass C, N, P of farmland soils in different land uses and croppingsystems in Dongting Lake region. Acta Ecologica Sinica, 2006, 26(7): 2261-2267. 彭佩钦, 吴金水, 黄道友, 等. 洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响. 生态学报, 2006, 26(7): 2261-2267. [56] Pang X, He W Q, Yan C R, et al. Effect of tillage and residue management on dynamic of soil microbial biomass carbon. Acta Ecologica Sinica, 2013, 33(4): 1308-1316. 庞绪, 何文清, 严昌荣, 等. 耕作措施对土壤水热特性和微生物生物量碳的影响. 生态学报, 2013, 33(4): 1308-1316. |