[1] Ren J Z. The general theory of grassland agro-ecosystem. Hefei: Anhui Education Press, 2004.
任继周. 草地农业生态系统通论. 合肥: 安徽教育出版社, 2004.
[2] Li A, Wu J, Huang J. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in Inner Mongolia. Landscape Ecology, 2012, 27(7): 969-982.
[3] Yin Y L, Wang Y Q, Li S X, et al. Effects of enclosing on soil microbial community diversity and soil stoichiometric characteristics in a degraded alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(1): 127-136.
尹亚丽, 王玉琴, 李世雄, 等. 围封对退化高寒草甸土壤微生物群落多样性及土壤化学计量特征的影响. 应用生态学报, 2019, 30(1): 127-136.
[4] Ma Y, Li L Z, Zhang D G, et al. Responses of stoichiometric characteristics of rhizosphere soil to the degradation of alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(9): 3039-3045.
马源, 李林芝, 张德罡, 等. 高寒草甸根际土壤化学计量特征对草地退化的响应. 应用生态学报, 2019, 30(9): 3039-3045.
[5] Moreau D, Bardgett R D, Finlay R D, et al. A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33(4): 540-552.
[6] Faucon M P, Houben D, Reynoird J P, et al. Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Advances in Agronomy, 2015, 134: 51-79.
[7] Merino C, Nannipieri P, Matus F. Soil carbon controlled by plant, microorganism and mineralogy interactions. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 321-332.
[8] Zhan Y Y, Xue Z Y, Ren W, et al. Characteristics of nitrogen content between rhizosphere and bulk soil under seven shrubs in arid desert area of China. Acta Ecologica Sinica, 2009, 29(1): 59-66.
詹媛媛, 薛梓瑜, 任伟, 等. 干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征. 生态学报, 2009, 29(1): 59-66.
[9] Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310.
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310.
[10] Zhang F S, Shen J B, Feng G. Rhizosphere ecology: Processes & management. Beijing: China Agricultural University Press, 2009.
张福锁, 申建波, 冯固. 根际生态学——过程与调控. 北京: 中国农业大学出版社, 2009.
[11] Zhang D S, Li H B, Shen J B. Strategies for root’s foraging and acquiring soil nutrient in high efficiency under intensive cropping systems. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1547-1555.
张德闪, 李洪波, 申建波. 集约化互作体系植物根系高效获取土壤养分的策略与机制. 植物营养与肥料学报, 2017, 23(6): 1547-1555.
[12] Li Y S, Feng C L, Wu X F, et al. A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils. Acta Ecologica Sinica, 2015, 35(20): 6881-6890.
李韵诗, 冯冲凌, 吴晓芙, 等. 重金属污染土壤植物修复中的微生物功能研究进展. 生态学报, 2015, 35(20): 6881-6890.
[13] Lu J Y, Duan B H, Yang M, et al. Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors. Acta Prataculturae Sinica, 2018, 27(4): 178-188.
陆姣云, 段兵红, 杨梅, 等. 植物叶片氮磷养分重吸收规律及其调控机制研究进展. 草业学报, 2018, 27(4): 178-188.
[14] Fageria N K, Stone L F. Physical, chemical, and biological changes in the rhizosphere and nutrient availability. Journal of Plant Nutrition, 2006, 29(7): 1327-1356.
[15] Hartmann A, Rothballer M, Schmid M. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 2008, 312(1/2): 7-14.
[16] Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431.
[17] Berg G. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 2009, 84(1): 11-18.
[18] Massalha H, Korenblum E, Tholl D, et al. Small molecules below-ground: The role of specialized metabolites in the rhizosphere. The Plant Journal, 2017, 90(4): 788-807.
[19] Larimer A L, Clay K, Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95(4): 1045-1054.
[20] Haichar F, Marol C, Berge O, et al. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, 2008, 2(12): 1221.
[21] Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42(9): 1363-1371.
[22] Lakshmanan V, Kitto S L, Caplan J L, et al. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiology, 2012, 160(3): 1642-1661.
[23] Chang X X, Duan C Q, Wang H. Root excretion and plant resistance to metal toxicity. Chinese Journal of Applied Ecology, 2000, (2): 315-320.
常学秀, 段昌群, 王焕. 根分泌作用与植物对金属毒害的抗性. 应用生态学报, 2000, (2): 315-320.
[24] Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil, 2001, 237(2): 173-195.
[25] Rumpel C, Crème A, Ngo P T, et al. The impact of grassland management on biogeochemical cycles involving carbon, nitrogen and phosphorus. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 353-371.
[26] Dungait J A J, Cardenas L M, Blackwell M S A, et al. Advances in the understanding of nutrient dynamics and management in UK agriculture. Science of the Total Environment, 2012, 434: 39-50.
[27] Liu Z Y, Shi W M. Distribution of nutrients in the root and rhizosphere by electron probe X-ray microanalysis. Plant Physiology Journal, 1988, 14(1): 23-28.
刘芷宇, 施卫明. 应用电子探针对植物根际和根内营养元素微区分布的探讨. 植物生理学报, 1988, 14(1): 23-28.
[28] Marschner H. Marschner’s mineral nutrition of higher plants. Amsterdam, Netherlands: Academic Press (Elsevier), 2011.
[29] Hamilton III E W, Frank D A, Hinchey P M, et al. Defoliation induces root exudation and triggers positive rhizospheric feedbacks in a temperate grassland. Soil Biology and Biochemistry, 2008, 40(11): 2865-2873.
[30] Gianfreda L. Enzymes of importance to rhizosphere processes. Journal of Soil Science and Plant Nutrition, 2015, 15(2): 283-306.
[31] Marinari S, Moscatelli C, Grego S. Enzymes at plant-soil interface//Gianfreda L, Rao M A, edition. Enzymes in agricultural sciences. OMICS eBooks Group. https://www.esciencecentral.org/ebooks/ebookdetail/enzymes-in-agricultural-sciences, 2014: 94-109.
[32] Knicker H, Lüdemann H D, Haider K. Incorporation studies of NH4+ during incubation of organic residues by l5N-CPMAS-NMR-spectroscopy. European Journal of Soil Science, 1997, 48(3): 431-441.
[33] Burns R G, Dick R P. Enzymes in the environment: Activity, ecology, and applications. Florida: CRC Press, 2002.
[34] Dalai R C. Soil organic phosphorus. Advances in Agronomy. New York: Academic Press (Elsevier), 1977, 29: 83-117.
[35] Nannipieri P, Smalla K. Nucleic acids and proteins in soil. Berlin, Heidelberg: Springer Science & Business Media, 2006.
[36] Egamberdieva D, Renella G, Wirth S, et al. Enzyme activities in the rhizosphere of plants//Soil Enzymology. Berlin, Heidelberg: Springer, 2010: 149-166.
[37] Cenini V L. Linkages between soil enzyme activities and critical ecosystem processes in grasslands. London: Ulster University, 2016.
[38] Makoi J H, Ndakidemi P A. Selected soil enzymes: Examples of their potential roles in the ecosystem. African Journal of Biotechnology, 2008, 7(3): 181-191.
[39] Dornbush M E. Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biology and Biochemistry, 2007, 39(9): 2241-2249.
[40] Rao M A, Scelza R, Acevedo F, et al. Enzymes as useful tools for environmental purposes. Chemosphere, 2014, 107: 145-162.
[41] Bardgett R D, Manning P, Morriёn E, et al. Hierarchical responses of plant-soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology, 2013, 101(2): 334-343.
[42] Achat D L, Augusto L, Gallet-Budynek A, et al. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: A review. Biogeochemistry, 2016, 131(1/2): 173-202.
[43] Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478-486.
[44] Philippot L, Hallin S, Börjesson G, et al. Biochemical cycling in the rhizosphere having an impact on global change. Plant and Soil, 2009, 321(1/2): 61-81.
[45] Conrad R. Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 2007, 96(7): 1-63.
[46] Kang S M, Khan A L, Waqas M, et al. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 2014, 9(1): 673-682.
[47] Carter J P, Spink J, Cannon P F, et al. Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Applied and Environmental Microbiology, 1999, 65(8): 3364-3372.
[48] Bari R, Jones J D G. Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009, 69(4): 473-488.
[49] Hurek T, Handley L L, Reinhold-Hurek B, et al. Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Molecular Plant-Microbe Interactions, 2002, 15(3): 233-242.
[50] Fierer N, Schimel J P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 2003, 67(3): 798-805.
[51] Neumann G, Massonneau A, Martinoia E, et al. Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta, 1999, 208(3): 373-382.
[52] Bressan M, Roncato M A, Bellvert F, et al. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. The ISME Journal, 2009, 3(11): 1243.
[53] Schimel J, Schaeffer S M. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012, 3: 348.
[54] Ekschmitt K, Liu M, Vetter S, et al. Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil? Geoderma, 2005, 128(1/2): 167-176.
[55] Redin M, Guénon R, Recous S, et al. Carbon mineralization in soil of roots from twenty crop species, as affected by their chemical composition and botanical family. Plant and soil, 2014, 378(1/2): 205-214.
[56] Suding K N, Collins S L, Gough L, et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences, 2005, 102(12): 4387-4392.
[57] Clark C M, Cleland E E, Collins S L, et al. Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 2007, 10(7): 596-607.
[58] Turner T. Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome. Norwich: University of East Anglia, 2013.
[59] Rodríguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 2006, 287(1/2): 15-21.
[60] Beauregard M S, Hamel C, St-Arnaud M. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology, 2010, 59(2): 379-389.
[61] Zhou H. Characteristics and adaptation mechanism of soil microbial communities of alpine steppe under different altitudes on Qinghai-Tibetan Plateau. Lanzhou: Gansu Agricultural University, 2019.
周恒. 不同海拔高寒草原土壤微生物特征及其适应机制. 兰州: 甘肃农业大学, 2019.
[62] Coolon J D, Jones K L, Todd T C, et al. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie. PLoS One, 2013, 8(6): e67884.
[63] Dijkstra F A, Carrillo Y, Pendall E, et al. Rhizosphere priming: A nutrient perspective. Frontiers in Microbiology, 2013, 4: 216.
[64] Zhang F S, Cao Y P. Rhizosphere dynamics and plant nutrition. Acta Pedologica Sinica, 1992, (3): 239-250.
张福锁, 曹一平. 根际动态过程与植物营养. 土壤学报, 1992, (3): 239-250.
[65] Cheng W, Parton W J, Gonzalez-Meler M A, et al. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 2014, 201(1): 31-44.
[66] Neumann G, Romheld V. The release of root exudates as affected by the plant’s physiological status. The Rhizosphere, USA: CRC Press, 2000: 57-110.
[67] Zhang H H, Tang M, Chen H, et al. Effects of inoculation with ectomycorrhizal fungi on microbial biomass and bacterial functional diversity in the rhizosphere of Pinus tabulaeformis seedlings. European Journal of Soil Biology, 2010, 46(1): 55-61.
[68] Gong M, Tang M, Zhang Q, et al. Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, China. Acta Ecologica Sinica, 2012, 32(2): 62-67.
[69] Yoshitomi K J, Shann J R. Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil Biology and Biochemistry, 2001, 33(12/13): 1769-1776.
[70] Ohwaki Y, Sugahara K. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinum L.). Plant and Soil, 1997, 189(1): 49-55.
[71] Imas P, Bar-Yosef B, Kafkafi U, et al. Release of carboxylic anions and protons by tomato roots in response to ammonium nitrate ratio and pH in nutrient solution. Plant and Soil, 1997, 191(1): 27-34. |