草业学报 ›› 2020, Vol. 29 ›› Issue (12): 38-49.DOI: 10.11686/cyxb2020315
收稿日期:
2020-07-06
修回日期:
2020-08-25
出版日期:
2020-12-28
发布日期:
2020-12-28
通讯作者:
舒英格
作者简介:
Corresponding author. E-mail: maogen958@163.com基金资助:
Peng-peng ZHOU(), Ying-ge SHU(), Zhong-liu CHEN, Qing-song CHEN
Received:
2020-07-06
Revised:
2020-08-25
Online:
2020-12-28
Published:
2020-12-28
Contact:
Ying-ge SHU
摘要:
研究喀斯特山区不同土地利用方式(耕地、荒草地、退耕还草地和林草间作地)石灰土剖面化学风化特征,探讨矿质元素在石灰土剖面的分布、迁移和富集特征,从不同土地利用方式下土壤风化度,元素淋溶度、迁移度和残积度的角度分析土壤化学风化特征。结果表明:喀斯特山区石灰土剖面氧化物含量以SiO2、Al2O3、Fe2O3为主,其他氧化物含量相对较低,均属于中等变异元素,SiO2、Al2O3、MgO含量以荒草地较高,CaO、Na2O含量以林草间作地较高,Fe2O3、MnO、P2O5、K2O以耕地较高;研究区土壤处于中等化学风化阶段,富铝化程度弱,不同土地利用方式下荒草地土壤化学蚀变系数较强,林草间作地土壤富铝化程度较高;研究区土壤K、Na、Ca淋失严重,荒草地盐基离子淋失明显,林草间作地盐基离子淋失程度相对较低;土壤Fe、Al相对富集明显,残积程度高,林草间作地Al含量积累明显,退耕还草地Fe含量富集显著;实施“退耕—还草”等增加植被覆盖度的治理模式对土壤的保护作用显著。
周鹏鹏, 舒英格, 陈忠柳, 陈青松. 喀斯特山区不同土地利用方式下石灰土化学风化特性[J]. 草业学报, 2020, 29(12): 38-49.
Peng-peng ZHOU, Ying-ge SHU, Zhong-liu CHEN, Qing-song CHEN. Chemical weathering characteristics of calcareous soil under different land-use patterns in a Karst mountainous area[J]. Acta Prataculturae Sinica, 2020, 29(12): 38-49.
土地利用方式 Land use patterns | 地理位置 Geographical position | 海拔 Elevation (m) | 坡度 Slope (°) | 采样数 Hits | 主要植被 Major vegetation | 植被覆盖率 Vegetation coverage (%) | 岩石裸露率 Rock exposure rate (%) |
---|---|---|---|---|---|---|---|
耕地 Cultivated land (CL) | 25°49′56″-25°50′11″ N 105°11′57″-105°12′47″ E | 1501~1591 | 14~23 | 21 | 玉米Zea mays;烤烟Nicotiana tabacum | - | 28.50 |
荒草地 Wild grass land (WGL) | 25°49′47″- 25°50′10″ N 105°11′26″-105°12′05″ E | 1503~1577 | 20~28 | 47 | 蕨P. aquilinum;三叶草T. repens | 52.00 | 58.50 |
退耕还草地 Returning farmland to grassland (RFL) | 25°49′55″- 25°51′08″ N 105°11′26″-105°12′05″ E | 1307~1520 | 25~40 | 88 | 青蒿A. carvifolia;皇竹草P. sinese;三叶草T. repens | 72.45 | 27.56 |
林草间作地 Forest and grass intercropping (FGL) | 25°49′54″- 25°50′10″ N 105°11′37″-105°12′04″ E | 1519~1557 | 26~40 | 43 | 楸树C. bungei;三叶草T. repens;青蒿A. carvifolia | 52.58 | 46.12 |
表1 土壤采样点的基本描述
Table 1 Basic description of soil sampling points
土地利用方式 Land use patterns | 地理位置 Geographical position | 海拔 Elevation (m) | 坡度 Slope (°) | 采样数 Hits | 主要植被 Major vegetation | 植被覆盖率 Vegetation coverage (%) | 岩石裸露率 Rock exposure rate (%) |
---|---|---|---|---|---|---|---|
耕地 Cultivated land (CL) | 25°49′56″-25°50′11″ N 105°11′57″-105°12′47″ E | 1501~1591 | 14~23 | 21 | 玉米Zea mays;烤烟Nicotiana tabacum | - | 28.50 |
荒草地 Wild grass land (WGL) | 25°49′47″- 25°50′10″ N 105°11′26″-105°12′05″ E | 1503~1577 | 20~28 | 47 | 蕨P. aquilinum;三叶草T. repens | 52.00 | 58.50 |
退耕还草地 Returning farmland to grassland (RFL) | 25°49′55″- 25°51′08″ N 105°11′26″-105°12′05″ E | 1307~1520 | 25~40 | 88 | 青蒿A. carvifolia;皇竹草P. sinese;三叶草T. repens | 72.45 | 27.56 |
林草间作地 Forest and grass intercropping (FGL) | 25°49′54″- 25°50′10″ N 105°11′37″-105°12′04″ E | 1519~1557 | 26~40 | 43 | 楸树C. bungei;三叶草T. repens;青蒿A. carvifolia | 52.58 | 46.12 |
指标 Index | 层次 Level (cm) | 样本数 No. of samples | 极小值 Min (g·kg-1) | 极大值 Max (g·kg-1) | 均值 Mean (g·kg-1) | 标准差 SD (g·kg-1) | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|
SiO2 | 0~10 | 72 | 184.89 | 571.74 | 381.73a | 70.08 | 18.36 |
10~20 | 72 | 202.42 | 588.75 | 390.01a | 74.19 | 19.02 | |
20~40 | 45 | 207.33 | 629.07 | 400.92a | 89.22 | 22.25 | |
40~60 | 10 | 289.77 | 650.22 | 400.96a | 106.30 | 26.51 | |
Al2O3 | 0~10 | 72 | 74.33 | 199.14 | 137.88b | 24.83 | 18.01 |
10~20 | 72 | 81.46 | 240.44 | 144.63b | 28.67 | 19.82 | |
20~40 | 45 | 93.85 | 212.16 | 147.34ab | 29.97 | 20.34 | |
40~60 | 10 | 115.52 | 205.70 | 160.25a | 24.39 | 15.22 | |
Fe2O3 | 0~10 | 72 | 30.85 | 131.28 | 83.07a | 16.27 | 19.58 |
10~20 | 72 | 42.43 | 121.96 | 88.29a | 14.50 | 16.42 | |
20~40 | 45 | 50.97 | 124.51 | 87.77a | 14.30 | 16.29 | |
40~60 | 10 | 72.87 | 97.38 | 84.66a | 7.13 | 8.43 | |
CaO | 0~10 | 72 | 3.44 | 22.67 | 10.73a | 4.96 | 46.25 |
10~20 | 72 | 3.79 | 22.13 | 10.00ab | 4.32 | 43.22 | |
20~40 | 45 | 3.17 | 20.30 | 9.63ab | 3.82 | 39.65 | |
40~60 | 10 | 6.04 | 10.35 | 7.98b | 1.31 | 16.36 | |
MgO | 0~10 | 72 | 9.48 | 24.95 | 13.93a | 3.51 | 25.21 |
10~20 | 72 | 9.37 | 26.17 | 14.34a | 3.82 | 26.62 | |
20~40 | 45 | 9.88 | 24.71 | 15.19a | 3.55 | 23.37 | |
40~60 | 10 | 10.07 | 22.81 | 14.83a | 3.75 | 25.27 | |
MnO | 0~10 | 72 | 0.91 | 4.22 | 2.48a | 0.88 | 35.26 |
10~20 | 72 | 1.04 | 4.43 | 2.54a | 0.89 | 35.07 | |
20~40 | 45 | 1.06 | 4.43 | 2.33a | 0.92 | 39.39 | |
40~60 | 10 | 1.04 | 4.27 | 2.47a | 1.04 | 42.19 | |
P2O5 | 0~10 | 72 | 1.55 | 4.97 | 3.02a | 1.01 | 33.33 |
10~20 | 72 | 1.34 | 5.12 | 2.78a | 1.04 | 37.54 | |
20~40 | 45 | 1.40 | 5.11 | 2.60ab | 1.01 | 38.99 | |
40~60 | 10 | 1.55 | 2.96 | 2.17b | 0.55 | 25.18 | |
K2O | 0~10 | 72 | 4.98 | 17.39 | 11.73a | 2.32 | 19.83 |
10~20 | 72 | 5.22 | 18.58 | 12.17a | 2.56 | 21.02 | |
20~40 | 45 | 5.39 | 31.96 | 12.45a | 4.09 | 32.80 | |
40~60 | 10 | 4.81 | 13.29 | 8.88b | 2.60 | 29.26 | |
Na2O | 0~10 | 72 | 1.13 | 9.14 | 3.47a | 1.41 | 40.71 |
10~20 | 72 | 0.82 | 6.41 | 3.32a | 1.23 | 37.19 | |
20~40 | 45 | 1.10 | 7.99 | 3.60a | 1.22 | 33.84 | |
40~60 | 10 | 2.41 | 5.44 | 4.13a | 1.26 | 30.60 |
表2 喀斯特山区剖面土壤矿质元素含量经典性描述
Table 2 Classical descriptions of soil mineral element contents in Karst mountainous area profiles
指标 Index | 层次 Level (cm) | 样本数 No. of samples | 极小值 Min (g·kg-1) | 极大值 Max (g·kg-1) | 均值 Mean (g·kg-1) | 标准差 SD (g·kg-1) | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|
SiO2 | 0~10 | 72 | 184.89 | 571.74 | 381.73a | 70.08 | 18.36 |
10~20 | 72 | 202.42 | 588.75 | 390.01a | 74.19 | 19.02 | |
20~40 | 45 | 207.33 | 629.07 | 400.92a | 89.22 | 22.25 | |
40~60 | 10 | 289.77 | 650.22 | 400.96a | 106.30 | 26.51 | |
Al2O3 | 0~10 | 72 | 74.33 | 199.14 | 137.88b | 24.83 | 18.01 |
10~20 | 72 | 81.46 | 240.44 | 144.63b | 28.67 | 19.82 | |
20~40 | 45 | 93.85 | 212.16 | 147.34ab | 29.97 | 20.34 | |
40~60 | 10 | 115.52 | 205.70 | 160.25a | 24.39 | 15.22 | |
Fe2O3 | 0~10 | 72 | 30.85 | 131.28 | 83.07a | 16.27 | 19.58 |
10~20 | 72 | 42.43 | 121.96 | 88.29a | 14.50 | 16.42 | |
20~40 | 45 | 50.97 | 124.51 | 87.77a | 14.30 | 16.29 | |
40~60 | 10 | 72.87 | 97.38 | 84.66a | 7.13 | 8.43 | |
CaO | 0~10 | 72 | 3.44 | 22.67 | 10.73a | 4.96 | 46.25 |
10~20 | 72 | 3.79 | 22.13 | 10.00ab | 4.32 | 43.22 | |
20~40 | 45 | 3.17 | 20.30 | 9.63ab | 3.82 | 39.65 | |
40~60 | 10 | 6.04 | 10.35 | 7.98b | 1.31 | 16.36 | |
MgO | 0~10 | 72 | 9.48 | 24.95 | 13.93a | 3.51 | 25.21 |
10~20 | 72 | 9.37 | 26.17 | 14.34a | 3.82 | 26.62 | |
20~40 | 45 | 9.88 | 24.71 | 15.19a | 3.55 | 23.37 | |
40~60 | 10 | 10.07 | 22.81 | 14.83a | 3.75 | 25.27 | |
MnO | 0~10 | 72 | 0.91 | 4.22 | 2.48a | 0.88 | 35.26 |
10~20 | 72 | 1.04 | 4.43 | 2.54a | 0.89 | 35.07 | |
20~40 | 45 | 1.06 | 4.43 | 2.33a | 0.92 | 39.39 | |
40~60 | 10 | 1.04 | 4.27 | 2.47a | 1.04 | 42.19 | |
P2O5 | 0~10 | 72 | 1.55 | 4.97 | 3.02a | 1.01 | 33.33 |
10~20 | 72 | 1.34 | 5.12 | 2.78a | 1.04 | 37.54 | |
20~40 | 45 | 1.40 | 5.11 | 2.60ab | 1.01 | 38.99 | |
40~60 | 10 | 1.55 | 2.96 | 2.17b | 0.55 | 25.18 | |
K2O | 0~10 | 72 | 4.98 | 17.39 | 11.73a | 2.32 | 19.83 |
10~20 | 72 | 5.22 | 18.58 | 12.17a | 2.56 | 21.02 | |
20~40 | 45 | 5.39 | 31.96 | 12.45a | 4.09 | 32.80 | |
40~60 | 10 | 4.81 | 13.29 | 8.88b | 2.60 | 29.26 | |
Na2O | 0~10 | 72 | 1.13 | 9.14 | 3.47a | 1.41 | 40.71 |
10~20 | 72 | 0.82 | 6.41 | 3.32a | 1.23 | 37.19 | |
20~40 | 45 | 1.10 | 7.99 | 3.60a | 1.22 | 33.84 | |
40~60 | 10 | 2.41 | 5.44 | 4.13a | 1.26 | 30.60 |
图 2 不同土地利用方式下土壤矿质元素的剖面分布CL:耕地Cultivated land; WGL:荒草地Wild grass land; RFL:退耕还草地Returning farmland to grassland; FGL:林草间作地Forest and grass intercropping.下同The same below.
Fig.2 Profile distribution of soil mineral elements under different land-use patterns
1 | He L B, Ma L, Zhao H B. Elemental homogenization during weathering and pedogenesis of volcanic rocks from North Da Hinggan Ling. Geochimica, 2004(2): 131-138. |
郝立波, 马力, 赵海滨. 岩石风化成土过程中元素均一化作用及机理: 以大兴安岭北部火山岩区为例. 地球化学, 2004(2): 131-138. | |
2 | Zhang X J, Ji H B, Feng X J, et al. Element geochemistry characteristic of the red soil weathering profiles in the Karst Basin. Scientia Geographica Sinica, 2017, 37(6): 944-951. |
张晓娟, 季宏兵, 冯晓静, 等. 岩溶盆地红土风化剖面的元素地球化学研究. 地理科学, 2017, 37(6): 944-951. | |
3 | Pang J L, Zhang W Q, Huang C C, et al. The influence of land use change on soil development and over the loess tablelands in the Northern Weihe River Basin, China. Acta Geographica Sinica, 2010, 65(7): 789-800. |
庞奖励, 张卫青, 黄春长, 等. 渭北高原土地利用变化对土壤剖面发育的影响——以洛川—长武塬区耕地转为苹果园为例. 地理学报, 2010, 65(7): 789-800. | |
4 | Zhang Y F, Li C A, Xiong D Q, et al. Oxide geochemical characteristics and paleoclimate records of “Wushanloess”. Geology in China, 2013, 40(1): 352-360. |
张玉芬, 李长安, 熊德强, 等. “巫山黄土”氧化物地球化学特征与古气候记录. 中国地质, 2013, 40(1): 352-360. | |
5 | Niu X L, Pang J L, Huang C C, et al. Study on weathering degree of holocene loess-paleosol sequence in the Zhouyuan region, Shaanxi Province. Arid Zone Research, 2011, 28(2): 306-312. |
牛晓露, 庞奖励, 黄春长, 等. 陕西周原地区全新世黄土-古土壤序列风化程度研究. 干旱区研究, 2011, 28(2): 306-312. | |
6 | Gao P K, Pang J L, Huang C C, et al. Weathering intensity of the Chafangcun loess-paleosol profile in Shaanxi, China and its response to climate change. Journal of Desert Research, 2014, 34(5): 1248-1253. |
高鹏坤, 庞奖励, 黄春长, 等. 陕西省丹凤县茶房村黄土-古土壤剖面风化程度及对气候变化的响应. 中国沙漠, 2014, 34(5): 1248-1253. | |
7 | Jiang W, Li Y H, Wei D L, et al. Preliminary geochemical characteristics of red weathering crust in Shicao profile, Southern Liaoning Province. Journal of Arid Land Resources and Environment, 2019, 33(5): 126-131. |
蒋伟, 李永化, 魏东岚, 等. 辽南石槽剖面红色风化壳地球化学特征初步分析. 干旱区资源与环境, 2019, 33(5): 126-131. | |
8 | Li J W, Zhang G L, Li D C, et al. Mobilization and redistribution of elements in soils developed from extremely weathered basalts on the Hainan island. Earth and Environment, 2012, 40(4): 491-498. |
李建武, 张甘霖, 李德成, 等. 强烈风化条件下玄武岩发育土壤的元素地球化学特征. 地球与环境, 2012, 40(4): 491-498. | |
9 | Zhu L D, Zhou S Z, Li F Q, et al. Geochemical behavior of major elements of pleistocene red earth in South China. Geochimica, 2007(3): 295-302. |
朱丽东, 周尚哲, 李凤全, 等. 南方更新世红土氧化物地球化学特征. 地球化学, 2007(3): 295-302. | |
10 | Du H, Song T Q, Peng W X, et al. Spatial heterogeneity of mineral compositions in surface soil in Mulun National Nature Reserve Karst areas. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6): 79-84, 400. |
杜虎, 宋同清, 彭晚霞, 等. 木论喀斯特自然保护区表层土壤矿物质的空间异质性. 农业工程学报, 2011, 27(6): 79-84, 400. | |
11 | Gao P, Fu T G, Wang K L, et al. Spatial heterogeneity of surface soil mineral components in a small catchment in Karst peakcluster depression area, South China. Chinese Journal of Applied Ecology, 2013, 24(11): 3179-3184. |
高鹏, 付同刚, 王克林, 等. 喀斯特峰丛洼地小流域表层土壤矿物的空间异质性. 应用生态学报, 2013, 24(11): 3179-3184. | |
12 | Li S S, Fan F J, Song T Q, et al. Spatial variation of soil minerals in the gorge Karst region, Southwest China. Acta Ecologica Sinica, 2014, 34(18): 5320-5327. |
李莎莎, 范夫静, 宋同清, 等. 西南峡谷型喀斯特区坡地土壤矿物质的空间分布特征. 生态学报, 2014, 34(18): 5320-5327. | |
13 | Han M R, Song T Q, Peng W X, et al. Compositional characteristics and roles of soil mineral substances in depressions between hills in Karst region. Chinese Journal of Applied Ecology, 2012, 23(3): 685-693. |
韩美荣, 宋同清, 彭晚霞, 等. 喀斯特峰丛洼地土壤矿物质的组成特征与作用. 应用生态学报, 2012, 23(3): 685-693. | |
14 | Zhou D Q, Wang S J, Liu X M. Study on geochemical processes in limestone soil profiles. Geology Geochemistry, 2005(2): 31-38. |
周德全, 王世杰, 刘秀明. 石灰土(碳酸盐岩风化壳)形成地球化学过程研究. 地球与环境, 2005(2): 31-38. | |
15 | Wei Q F, Chen H Z, Wu Z D, et al. The geochemical characteristics of limestone soils in Longgang area, Guangxi. Acta Pedologica Sinica, 1983(1): 30-42. |
韦启璠, 陈鸿昭, 吴志东, 等. 广西(山弄)岗自然保护区石灰土的地球化学特征. 土壤学报, 1983(1): 30-42. | |
16 | Liu W J, Tu C L, Lang Y C, et al. Major and trace element compositions of yellow and limestone soils in the Karst Area of Southwest China: Implications for weathering and soil-formation processes. Earth and Environment, 2010, 38(3): 271-279. |
刘文景, 涂成龙, 郎赟超, 等. 喀斯特地区黄壤和石灰土剖面化学组成变化与风化成土过程. 地球与环境, 2010, 38(3): 271-279. | |
17 | Wen X Q, Shu Y G, He H. Soil nutrients and microbial characteristics under different land utilization patterns in Karst mountainous Area. Southwest China Journal of Agricultural Sciences, 2018, 31(6): 1227-1233. |
文小琴, 舒英格, 何欢. 喀斯特山区土地不同利用方式的土壤养分及微生物特征. 西南农业学报, 2018, 31(6): 1227-1233. | |
18 | Peng W J, Shu Y G. Assessment on ecological risk of land use spatial change at county level in the rocky desertification mountainous area based on GIS. Research of Soil and Water Conservation, 2018, 25(1): 342-348, 355. |
彭文君, 舒英格. 基于GIS的石漠化山区县域土地利用空间变化的生态风险测度. 水土保持研究, 2018, 25(1): 342-348, 355. | |
19 | Chen M J, Shu Y G, Xiao S Y. Methods of soil organic and inorganic phosphorus fractionation in Karst areas. Journal of Agricultural Resources and Environment, 2019, 36(4): 462-470. |
陈梦军, 舒英格, 肖盛杨. 喀斯特山区土壤有机无机磷分级方法的比较研究. 农业资源与环境学报, 2019, 36(4): 462-470. | |
20 | Zhang G L, Gong Z T. Soil survey laboratory methods. Beijing: Science Press, 2012. |
张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012. | |
21 | Fang J Y, Wang X P, Shen Z H, et al. Methods and protocols for plant community inventory. Biodiversity Science, 2009, 17(6): 533-548. |
方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范. 生物多样性, 2009, 17(6): 533-548. | |
22 | Mao P N, Pang J L, Huang C C, et al. Chemical weathering characteristics and regional comparative study of the loess deposits in the upper Hanjiang River. Acta Geographica Sinica, 2017, 72(2): 279-291. |
毛沛妮, 庞奖励, 黄春长, 等. 汉江上游黄土常量元素地球化学特征及区域对比. 地理学报, 2017, 72(2): 279-291. | |
23 | Wei D L, Shen J J, Li Y H. Geochemical characteristics of red weathering crust from Shicao profile in Southern Liaoning Province and the response of paleoclimate evolution. Scientia Geographica Sinica, 2018, 38(2): 307-313. |
魏东岚, 沈俊杰, 李永化. 红色风化壳地球化学特征及对古气候演变的响应——以辽南石槽剖面为例. 地理科学, 2018, 38(2): 307-313. | |
24 | Chen Y M, Shu Q, Zhang M H, et al. Environmental evolution information recorded in the Xiashu loess (250-100 ka) in Nanjing, China. Geological Science and Technology Information, 2014, 33(6): 55-59, 77. |
陈玉美, 舒强, 张茂恒, 等. 南京下蜀黄土记录的250~100 ka期间的环境演化信息. 地质科技情报, 2014, 33(6): 55-59, 77. | |
25 | Zhang Y F, Shao L, Xiong D Q. Elemental compositions of the "Wushan Loess" : Implications for origin and sediment source. Acta Sedimentologica Sinica, 2014, 32(1): 78-84. |
张玉芬, 邵磊, 熊德强. “巫山黄土”元素地球化学特征及成因和物源意义. 沉积学报, 2014, 32(1): 78-84. | |
26 | Zhang R D. Spatial variability theory and application. Beijing: Science Press, 2005. |
张仁铎. 空间变异理论及应用. 北京: 科学出版社, 2005. | |
27 | Wei X R, Shao M A. Distribution of micronutrients in soils as affected by landforms in a loessial gully watershed. Environmental Science, 2009, 30(9): 2741-2746. |
魏孝荣, 邵明安. 黄土沟壑区小流域不同地形下土壤微量元素分布特征. 环境科学, 2009, 30(9): 2741-2746. | |
28 | Li J W, Zhang G L, Li D C, et al. Mobilization and redistribution of elements in soils developed from extremely weathered basalts on the Hainan Island. Earth and Environment, 2012, 40(4): 491-498. |
李建武, 张甘霖, 李德成, 等. 强烈风化条件下玄武岩发育土壤的元素地球化学特征.地球与环境, 2012, 40(4): 491-498. | |
29 | Zhang L, Ji H B, Gao J, et al. Geochemical characteristics of major, trace and rare earth elements in typical carbonate weathered profiles of Guizhou. Plateau Geochimica, 2015, 44(4): 323-336. |
张莉, 季宏兵, 高杰, 等. 贵州碳酸盐岩风化壳主元素、微量元素及稀土元素的地球化学特征. 地球化学, 2015, 44(4): 323-336. | |
30 | Yu Z Y. Soil development and its identification and classification. Beijing: Agriculture Press, 1991. |
俞震豫. 土壤发育及其鉴定和分类. 北京: 农业出版社, 1991. | |
31 | Zeng F P, Peng W X, Song T Q, et al. Changes in vegetation after 22 years’ natural restoration in the Karst disturbed area in Northwest Guangxi. Acta Ecologica Sinica, 2007, 27(12): 5110-5119. |
曾馥平, 彭晚霞, 宋同清, 等. 桂西北喀斯特人为干扰区植被自然恢复22年后群落特征. 生态学报, 2007, 27(12): 5110-5119. | |
32 | Wang D L, Shu Y G, Wen X Q, et al. Distribution characteristics of silicon, iron and aluminum in lime soil profile in Karst mountainous areas: A case study of Qinglong County, Guizhou Province. Carsologica Sinica, 2018, 37(5): 777-785. |
王大龙, 舒英格, 文小琴, 等. 岩溶山区石灰土剖面硅铁铝元素分布特征——以贵州省晴隆县为例. 中国岩溶, 2018, 37(5): 777-785. | |
33 | Xu W X, Bao Y H, Wei J, et al. Impacts of the typical herbaceous plant roots on soil scour resistance in the reservoir riparian zone. Journal of Soil and Water Conservation, 2019, 33(4): 65-71, 109. |
徐文秀, 鲍玉海, 韦杰, 等. 水库消落带典型草本植物根系对土壤抗冲性能的影响. 水土保持学报, 2019, 33(4): 65-71, 109. | |
34 | Hou C L, Yang R, Liu Z, et al. Water holding capacity of soil covered with different herbaceous plants in Caohai vegetation recovery area, Guizhou. Guizhou Agricultural Sciences, 2019, 47(8): 52-56. |
侯春兰, 杨瑞, 刘志, 等. 贵州草海植被恢复区不同草本植物的土壤持水性能. 贵州农业科学, 2019, 47(8): 52-56. | |
35 | Tang J, Dang T H, Xue J, et al. Effects of vegetation restoration on soil aggregate characteristics of coal dumps in coal mines in the Loess Plateau. Acta Ecologica Sinica, 2016, 36(16): 5067-5077. |
唐骏, 党廷辉, 薛江, 等. 植被恢复对黄土区煤矿排土场土壤团聚体特征的影响. 生态学报, 2016, 36(16): 5067-5077. | |
36 | Rong H, He J L, Zhang X, et al. Ecological benefits of soil and water conservation in different vegetation restoration patterns on desert steppe. Bulletin of Soil and Water Conservation, 2019, 39(5): 295-300. |
荣浩, 何京丽, 张欣, 等. 荒漠草原不同植被恢复模式的水土保持生态效益. 水土保持通报, 2019, 39(5): 295-300. |
[1] | 罗楠, 舒英格, 陈梦军, 肖盛杨. 喀斯特山区不同草地土壤结构及分形特征[J]. 草业学报, 2020, 29(7): 11-22. |
[2] | 马涛, 吕文强, 李泽霞, 陈爱华, 董彦丽. 黄土高原丘陵沟壑区轮作休耕模式下5种土地利用方式土壤剖面水分分布特征[J]. 草业学报, 2020, 29(7): 30-39. |
[3] | 黄玙璠, 舒英格, 肖盛杨, 陈梦军. 喀斯特山区不同草地土壤养分与酶活性特征[J]. 草业学报, 2020, 29(6): 93-104. |
[4] | 廖建军, 申小云, 霍宾, 熊康宁. 喀斯特山区草地施肥对放牧乌蒙半细毛羊抗氧化系统功能的影响[J]. 草业学报, 2018, 27(1): 169-176. |
[5] | 刘建新, 王金成, 刘秀丽. 外源NO对镧胁迫下燕麦幼苗活性氧代谢和矿质元素含量的影响[J]. 草业学报, 2017, 26(5): 135-143. |
[6] | 秦川, 何丙辉, 蒋先军. 三峡库区不同土地利用方式下土壤养分含量特征研究[J]. 草业学报, 2016, 25(9): 10-19. |
[7] | 李银科, 马全林, 王耀琳, 孙涛, 靳虎甲, 宋德伟, 朱国庆, 杜娟. 景电灌区次生盐渍化土地枸杞林的土壤特征研究[J]. 草业学报, 2015, 24(5): 66-74. |
[8] | 张晓艳,王丽丽,王利民,房毅,董树亭,阮怀军. 氮素运筹对皖草2号和墨西哥玉米吸收Fe、Mn、Cu、Zn的影响[J]. 草业学报, 2013, 22(3): 204-. |
[9] | 张晓艳,王丽丽,朱建华,董树亭,刘锋. 氮素运筹对皖草2号和墨西哥玉米吸收Ca、Mg、S的影响[J]. 草业学报, 2012, 21(6): 123-129. |
[10] | 申小云,蒋会梅,苑荣,贾志海. 草地施肥对牧草和放牧贵州半细毛羊的影响[J]. 草业学报, 2012, 21(3): 275-280. |
[11] | 林恭华,赵芳,陈桂琛,陈生云,苏建平,张同作. 青海湖北岸不同土地利用方式对大型土壤动物群落的影响[J]. 草业学报, 2012, 21(2): 180-186. |
[12] | 颜淑云, 周志宇,秦彧,邹丽娜. 玛曲高寒草地不同利用方式下土壤氮素含量特征[J]. 草业学报, 2010, 19(2): 153-159. |
[13] | 乔有明,王振群2,段中华2. 青海湖北岸土地利用方式对土壤碳氮含量的影响[J]. 草业学报, 2009, 18(6): 105-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||