[1] Qi Y C, Dong Y S, Geng Y B, et al. The progress in the carbon cycle researches in grassland ecosystem in China. Progress in Geography, 2003, 22(4): 342-352. 齐玉春, 董云社, 耿元波, 等. 我国草地生态系统碳循环研究进展. 地理科学进展, 2003, 22(4): 342-352. [2] Zhou P, Liu G B, Xue S. Review of soil respiration and the impact factors on grassland ecosystem. Acta Prataculturae Sinica, 2009, 18(2): 184-193. 周萍, 刘国彬, 薛萐. 草地生态系统土壤呼吸及其影响因素研究进展. 草业学报, 2009, 18(2): 184-193. [3] Geng Y B, Wang Z T, Li R X. Analysis of differences and influencing factors of plant δ13C in Leymus chinensis grassland in Inner Mongolia, China. Acta Agrestia Sinica, 2019, 27(1): 153-162. 耿元波, 王子腾, 李茹霞. δ13C值在羊草草原植物体中的差异和变化及其影响因素分析. 草地学报, 2019, 27(1): 153-162. [4] Wu J J, Yang Z J, Liu X F. Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chinese Journal of Plant Ecology, 2014, 38(1): 45-53. 吴君君, 杨智杰, 刘小飞. 米槠和杉木人工林土壤呼吸及其组分分析. 植物生态学报, 2014, 38(1): 45-53. [5] Sun W, Willams D. Partitioning night time ecosystem respiration of a riparian C4 grassland ecosystem by the application of stable isotope technique. Wetland Science, 2008, 6(2): 271-277. 孙伟, Willams D.利用稳定性同位素区分河岸C4草地生态系统夜晚碳通量. 湿地科学, 2008, 6(2): 271-277. [6] Zhu X J, Yu G R, Wang Q F, et al. The interaction between components of ecosystem respiration in typical forest and grassland ecosystems. Acta Ecologica Sinica, 2013, 33(21): 6925-6934. 朱先进, 于贵瑞, 王秋凤, 等. 典型森林和草地生态系统呼吸各组分间的相互关系. 生态学报, 2013, 33(21): 6925-6934. [7] Wang C L, Zhou G Y, Tang X L, et al. Ecosystem respiration and its controlling factors in a coniferous and broad leaved mixed forest in Dinghushan, China. Acta Ecologica Sinica, 2007, 27(7): 2659-2668. 王春林, 周国逸, 唐旭利, 等. 鼎湖山针阔叶混交林生态系统呼吸及其影响因子. 生态学报, 2007, 27(7): 2659-2668. [8] Li Y Z, Fan J W, Hu Z M, et al. The impact of different land uses and management strategies on ecosystem carbon exchange and its components in a typical temperate grassland area. Acta Ecologica Sinica, 2018, 38(22): 320-330. 李愈哲, 樊江文, 胡中民, 等. 温性草原利用方式对生态系统碳交换及其组分的影响. 生态学报, 2018, 38(22): 320-330. [9] Shi L Y, Mu C C, Tian X M. Ecosystem respiration and its affecting factors in typical marsh and shrub swamp in Xiaoxing’an Mountains. Chinese Journal of Ecology, 2009, 28(12): 2477-2482. 石兰英, 牟长城, 田新民. 小兴安岭典型沼泽湿地生态系统呼吸及其影响因子. 生态学杂志, 2009, 28(12): 2477-2482. [10] Zhang L H, Song C C, Wang D X, et al. Relationship of ecosystem respiration with temperature, nitrogen and plant in freshwater marshes. Environmental Science, 2007, 28(1): 3-10. 张丽华, 宋长春, 王德宣, 等. 沼泽湿地生态系统呼吸与温度、氮素及植物生长的相互关系. 环境科学, 2007, 28(1): 3-10. [11] Li Z M, Du R, Du P R, et al. Diurnal variation in methane flux and ecosystem respiration rate during the growing season in Hulunbuir grassland, Inner Mongolia. Climatic and Environmental Research, 2014, 19(6): 743-752. 李梓铭, 杜睿, 杜鹏瑞, 等. 生长旺盛期呼伦贝尔草甸草原生态系统呼吸与CH4吸收通量的日变化研究. 气候与环境研究, 2014, 19(6): 743-752. [12] Wang M, Liu Y Q, Hao Z Q, et al. Respiration rate of broad leaved korean pine forest ecosystem in Changbai Mountains. Chinese Journal of Applied Ecology, 2006, 17(10): 1789-1795. 王淼, 刘亚琴, 郝占庆, 等. 长白山阔叶红松林生态系统的呼吸速率. 应用生态学报, 2006, 17(10): 1789-1795. [13] Zhang J. Ecosystem respiration and it’s influencing factors of a subtropical manilagrass lawn. Fuzhou: Fujian Normal University, 2008. 张静. 亚热带马尼拉草坪生态系统呼吸及影响因子. 福州: 福建师范大学, 2008. [14] Mauritz M, Celis G, Ebert C, et al. Using stable carbon isotopes of seasonal ecosystem respiration to determine permafrost carbon loss. Journal of Geophysical Research-Biogeosciences, 2019, 124(1): 46-60. [15] Lin M. Comparison and evaluation of fluxes measurement methods for soil greenhouse gas. Hunan Agricultural Sciences, 2012, (9): 44-46, 50. 林茂. 土壤温室气体通量测定方法的比较和评价. 湖南农业科学, 2012, (9): 44-46, 50. [16] Liu L X, Dong Y S, Qi Y C, et al. Study of distinguish root respiration from total soil respiration by root exclusion method in the temperate semi-arid grassland in Inner Mongolia, China. Environmental Science, 2007, 28(4): 689-694. 刘立新, 董云社, 齐玉春, 等. 应用根去除法对内蒙古温带半干旱草原根系呼吸与土壤总呼吸的区分研究. 环境科学, 2007, 28(4): 689-694. [17] Del G I, Johan S, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Global Change Biology, 2010, 9(8): 1204-1213. [18] He Z C. Transformation of wheat straw carbon in low fertility soil and its effect on soil microbial community structure. Yangling: Northwest A & F Univerrsity, 2018. 何振超. 小麦秸秆碳在低肥力土壤中的转化及其对土壤微生物群落结构的影响. 杨凌: 西北农林科技大学, 2018. [19] Luo G Q, Geng Y B, Yuan G F. Application and prospect of carbon isotope in the study of carbon cycle in grassland ecosystem. Progress in Geography, 2009, 28(3): 441-448. 罗光强, 耿元波, 袁国富. 碳同位素在草地生态系统碳循环中的应用与展望. 地理科学进展, 2009, 28(3): 441-448. [20] Li Z P, Pan G X, Zhang X H. Topsoil organic carbon pool and 13C natural abundance changes from a paddy after 2 years corn cultivation. Acta Pedologica Sinica, 2007, 44(2): 244-251. 李志鹏, 潘根兴, 张旭辉. 改种玉米连续3年后稻田土壤有机碳分布和13C自然丰度变化. 土壤学报, 2007, 44(2): 244-251. [21] Deng Y W, Tang C, Yuan H C, et al. The 13C-CO2 pulsing labeling method: distribution of rice photosynthetic carbon in plant-soil systems during different rice growth stages. Acta Ecologica Sinica, 2017, 37(19): 181-186. 邓扬悟, 唐纯, 袁红朝, 等. 13C脉冲标记法:不同生育期水稻光合碳在植物-土壤系统中的分配. 生态学报, 2017, 37(19): 181-186. [22] Chen Z, Wang X K, Shang H. Using 13C isotope to investigate O3 effects on C fixation and translocation of rice. Chinese Journal of Ecology, 2014, 33(7): 1983-1988. 陈展, 王效科, 尚鹤. 利用13C同位素示踪方法测定O3对水稻C固定和迁移的影响. 生态学杂志, 2014, 33(7): 1983-1988. [23] Shi Y B, Cao B, Song L H, et al. Effect of doubled CO2 concentration on accumulation of photosynthate in Lycium barbarum by 13C isotope tracer technique. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 201-206. 石元豹, 曹兵, 宋丽华, 等. 用13C示踪研究CO2浓度倍增对枸杞光合产物积累的影响. 农业工程学报, 2016, 32(10): 201-206. [24] Snell H S K, David R, Midwood A J. Minimising methodological biases to improve the accuracy of partitioning soil respiration using natural abundance 13C. Rapid Communications in Mass Spectrometry Rcm, 2015, 28(21): 2341-2351. [25] Chen Y H, Hu J, Li Y H, et al. Application of stable carbon isotope techniques to research into water stress. Acta Ecologica Sinica, 2004, 24(5): 1027-1033. 陈英华, 胡俊, 李裕红, 等. 碳稳定同位素技术在植物水分胁迫研究中的应用. 生态学报, 2004, 24(5): 1027-1033. [26] Sun W, Lin G H, Chen S P, et al. Applications of stable isotope techniques and Keeling plot approach to carbon and water exchange studies of terrestrial ecosystems. Acta Phytoecologica Sinica, 2005, 29(5): 851-862. 孙伟, 林光辉, 陈世苹, 等. 稳定性同位素技术与Keeling曲线法在陆地生态系统碳/水交换研究中的应用. 植物生态学报, 2005, 29(5): 851-862. [27] Ekblad A, Högberg P. Analysis of δ13C of CO2 distinguishes between microbial respiration of added C4-sucrose and other soil respiration in a C3-ecosystem. Plant Soil, 2000, 219(1/2): 197-209. [28] Ohlsson K E A, Singh B, Holm S, et al. Uncertainties in static closed chamber measurements of the carbon isotopic ratio of soil-respired CO2. Soil Biology Biochemistry, 2005, 37(12): 2273-2276. [29] Keeling C D. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica Et Cosmochimica Acta, 1958, 13(4): 322-334. [30] Chen Z Z. Topography and climate overview of the Xilin River Basin. Beijing: Science Press, 1988. 陈佐忠. 锡林河流域地形与气候概况. 北京: 科学出版社, 1988. [31] Xing Y. Study on supply and demand of rangeland ecosystem services in Xilin River Basin. Huhhot: Mongolian University, 2018. 邢莹. 锡林河流域草原生态系统服务供给与需求分析. 呼和浩特: 内蒙古大学, 2018. [32] Chen D M, Li J J, Lan Z C, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 2016, 30(4): 658-669. [33] Hao Y B, Kang X M, Wu X, et al. Is frequency or amount of precipitation more important in controlling CO2 fluxes in the 30-year-old fenced and the moderately grazed temperate steppe? Agriculture Ecosystems Environment, 2013, 171(17): 63-71. [34] Li B, Yong S P, Li Z H. Vegetation and its utilization in the Xilin River Basin. Beijing: Science Press, 1988. 李博, 雍世鹏, 李忠厚. 锡林河流域植被及其利用. 北京: 科学出版社, 1988. [35] Liu W J, Li L F, Biederman J A, et al. Repackaging precipitation into fewer, larger storms reduces ecosystem exchanges of CO2 and H2O in a semiarid steppe. Agricultural and Forest Meteorology, 2017, 247: 356-364. [36] Geng Y B, Zhang S, Dong Y S, et al. The content of soil organic carbon and total nitrogen and correl ativity between their content and fluxes of CO2, N2O and CH4 in Xilin River Basin Steppe. Acta Geographica Sinica, 2001, 56(1): 44-53. 耿元波, 章申, 董云社, 等. 草原土壤的碳氮含量及其与温室气体通量的相关性. 地理学报, 2001, 56(1): 44-53. [37] Gong Z T. Chinese soil system classification: Theory, method and practice. Beijing: Science Press, 1999. 龚子同. 中国土壤系统分类: 理论·方法·实践. 北京: 科学出版社, 1999. [38] Wang J W, Cai W Q. Study on the occurrence types and properties of soil in Xilin River Basin. Beijing: Science Press, 1988. 汪久文, 蔡蔚琪. 锡林河流域土壤的发生类型及其性质的研究. 北京: 科学出版社, 1988. [39] Zhang H, Liu W J, Kang X M, et al. Changes in soil microbial community response to precipitation events in a semi-arid steppe of the Xilin River Basin, China. Journal of Arid Land, 2019, 11(1): 99-112. [40] Luo G Q, Geng Y B. Analysis of difference between ecosystem respirations of Leymus chinensis steppe and Stipa baicalensis steppe. Enironmental Science, 2010, 31(11): 2732-2739. 罗光强, 耿元波. 羊草草原和贝加尔针茅草原生态系统呼吸的差异分析. 环境科学, 2010, 31(11): 2732-2739. [41] Wang Z P, Li L H, Han X G, et al. Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe. Environmental Experimental Botany, 2007, 59(1): 1-10. [42] Mosier A R, Delgado J A. Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere, 1997, 35(9): 2059-2082. [43] Du R, Wang G C, Lü D R, et al. A study of chamber method for in-site measurements of greenhouse gase emissions from grassland. Chinese Journal of Atomspherie Seienees, 2001, 25(1): 61-70. 杜睿, 王庚辰, 吕达仁, 等. 箱法在草地温室气体通量野外实验观测中的应用研究. 大气科学, 2001, 25(1): 61-70. [44] Kessavalou A, Mosier A R, Doran J W, et al. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter wheat-fallow tillage management. Journal of Environmental Quality, 1998, 27(5): 1094. [45] Shi J J. Application of the stable isotope 13C in the partitioning of respiration in a Leymus chinensis steppe in Inner Mongolia, China. Beijing: University of Chinese Academy of Sciences, 2013. 史晶晶. 应用13C区分内蒙古羊草草原呼吸的研究. 北京: 中国科学院大学, 2013. [46] Yu X L, Jiang M. Research on dynamics of soil respiration in phragmites australis marsh and Leymus chinensis meadow. Journal of Chinese Agricultural Mechanization, 2016, 37(5): 236-240. 于秀丽, 姜明. 芦苇沼泽和羊草草甸土壤呼吸动态研究. 中国农机化学报, 2016, 37(5): 236-240. [47] Gong J R, Sha X, Wang Y, et al. Effect of irrigation on the soil respiration of constructed grasslands in Inner Mongolia, China. Plant Soil, 2015, 395(1/2): 159-172. [48] Wei X, Zhang Y, Liu J, et al. Response of soil CO2 efflux to precipitation manipulation in a semiarid grassland. Journal of Environmental Sciences-China, 2016, 45(7): 207-214. [49] Gu R, Chao L M, Zhang L X. The influence of hydrothermal factors on soil respiration and soil temperature sensitivity of Stipa krylovii steppe, Inner Mongolia, China. Acta Prataculturae Sinica, 2015, 24(4): 21-29. 谷蕊, 潮洛濛, 张立欣. 水热因子对克氏针茅草原土壤呼吸及其土壤温度敏感性的影响. 草业学报, 2015, 24(4): 21-29. [50] Xue H X, Li Q, Huang Y, et al. The effect of soil environmental factors on the carbon flux over Stipa krylovii ecosystem. Scientia Geographica Sinica, 2014, 34(11): 1385-1390. 薛红喜, 李琪, 黄瑜, 等. 土壤环境因子对克氏针茅草地生态系统碳通量的影响. 地理科学, 2014, 34(11): 1385-1390. [51] Millard P, Midwood A J, Hunt J E, et al. Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components, using natural gradients in soil δ13C in an undisturbed savannah soil. Soil Biology Biochemistry, 2008, 40(7): 1575-1582. [52] Ming W, Liu X, Zhang J, et al. Diurnal and seasonal dynamics of soil respiration at temperate Leymus chinensis meadow steppes in western Songnen Plain, China. Chinese Geographical Science, 2014, 24(3): 287-296. [53] Sharkhuu A, Plante A F, Enkhmandal O, et al. Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia. Geoderma, 2016, 269: 91-98. [54] Wang Y T, Zhao T Q, Wang X, et al. Respons of Stipa breviflora leaf δ13C to stocking rates. Ecology and Environmental Sciences, 2017, 26(4): 613-619. 王亚婷, 赵天启, 王玺, 等. 短花针茅(Stipa breviflora)叶片δ13C对载畜率的响应. 生态环境学报, 2017, 26(4): 613-619. [55] Zhu G D, Zhang H D, Yao H Y, et al. Effects of grazing on δ13C values of planta and soila in a Stipa breviflora desert steppe in Inner Mongolia, China. Grassland and Prataculture, 2015, 27(4): 45-50. 朱国栋, 张洪丹, 姚鸿云, 等. 内蒙古短花针茅荒漠草原主要植物和土壤δ13C对放牧干扰的响应. 草原与草业, 2015, 27(4): 45-50. [56] Hu L F, Wang B Z, Li H W. The comparative study of the soil respiration, CO2 emission and NEE from the farmland in the north of China. Ecology and Environmental Sciences, 2009, 18(2): 578-581. 胡立峰, 王宝芝, 李洪文. 土壤呼吸、农田CO2排放及NEE的比较研究. 生态环境学报, 2009, 18(2): 578-581. [57] Zhu Y L, Wu J S, Zhou W J, et al. CO2 emission from the paddy ecosystem in subtropical region and its influence factors. China Environmental Science, 2005, 25(2): 151-154. 朱咏莉, 吴金水, 周卫军, 等. 亚热带稻田生态系统CO2排放及影响因素. 中国环境科学, 2005, 25(2): 151-154. [58] Pärtel M, Hiiesalu I, Öpik M, et al. Below-ground plant species richness: New insights from DNA-based methods. Functional Ecology, 2012, 26(4): 775-782. [59] Wang J, Sha L Q, Li J Z, et al. CO2 efflux in subalpine meadows under different grazing management in Shangrila, Yunnan. Acta Ecologica Sinica, 2008, 28(8): 94-103. 王君, 沙丽清, 李检舟, 等. 云南香格里拉地区亚高山草甸不同放牧管理方式下的碳排放. 生态学报, 2008, 28(8): 94-103. [60] Xie H H, Ma W Y, Zhao C Y, et al. Research of the soil respiration and its components in subalpine grassland in the middle section of the Qilian Mountains. Journal of Glaciology and Geocryology, 2016, 38(3): 653-661. 解欢欢, 马文瑛, 赵传燕, 等. 祁连山中部亚高山草地土壤呼吸及其组分研究. 冰川冻土, 2016, 38(3): 653-661. [61] Wang D B. Researches on relationship between seed rain and community strueture in an Alpine Meadow on the Tibetan Plateau. Chengdu: Sichuan Agricultural University, 2010. 王多斌. 高寒草甸种子雨与群落结构的关系研究. 成都: 四川农业大学, 2010. [62] Sun S A, Chen Q, Han X, et al. Estimation of winter wheat photosynthesized carbon distribution and allocation belowground via 13C pulse-labeling. Environmental Science, 2018, 39(6): 2837-2844. 孙昭安, 陈清, 韩笑, 等. 13C脉冲标记法定量冬小麦光合碳分配及其向地下的输入. 环境科学, 2018, 39(6): 2837-2844. |