草业学报 ›› 2021, Vol. 30 ›› Issue (12): 161-171.DOI: 10.11686/cyxb2020459
• 研究论文 • 上一篇
赵文1(), 尹亚丽1, 李世雄1,2(), 刘燕1, 刘晶晶1, 董怡玲1, 苏世锋1, 吉凌鹤3
收稿日期:
2020-10-14
修回日期:
2021-01-11
出版日期:
2021-11-11
发布日期:
2021-11-11
通讯作者:
李世雄
作者简介:
Corresponding author. E-mail: shixionglee@hotmail.com基金资助:
Wen ZHAO1(), Ya-li YIN1, Shi-xiong LI1,2(), Yan LIU1, Jing-jing LIU1, Yi-ling DONG1, Shi-feng SU1, Ling-he JI3
Received:
2020-10-14
Revised:
2021-01-11
Online:
2021-11-11
Published:
2021-11-11
Contact:
Shi-xiong LI
摘要:
祁连山是我国西部重要的生态屏障,拥有大量的草地资源。研究草地土壤细菌群落组成及其与土壤环境因子间的关系,可对维持草地生态及了解祁连山土壤细菌群落组成提供一定的数据基础。采用高通量测序技术检测并分析了祁连山默勒镇3种类型草地 (高寒草甸、人工草地、沼泽化草甸)0~10 cm土壤细菌群落结构及多样性,并对上述土壤细菌群落与土壤理化因子的相关性进行了系统的研究。结果表明:1)沼泽化草甸土壤全氮、全磷、有机质碳、含水量和硝态氮显著高于高寒草甸和人工草地(P<0.05)。2)3地共测得有效序列1022446条,以97%的一致性将序列聚类,高寒草甸、人工草地、沼泽化草甸OTU聚类均值分别是4917、5233、5075条。3)Shannon和Simpson多样性指数3地间差异不显著,Chao1指数表现为人工草地>高寒草甸>沼泽化草甸(P<0.05)。4)在门水平上,3地均以变形菌门、酸杆菌门、放线菌门和浮霉菌门为主要类群;在属水平上,表现出不同类型草地细菌富集类型不同。5)有机质碳、全磷、土壤含水量与土壤细菌群落的组成表现出极显著相关(P<0.01)。综上,祁连山地区小生境内3种草地土壤微生物群落存在差异,有机质碳、全磷、土壤含水量是影响群落的主要驱动因子。
赵文, 尹亚丽, 李世雄, 刘燕, 刘晶晶, 董怡玲, 苏世锋, 吉凌鹤. 祁连山不同类型草地土壤细菌群落特征研究[J]. 草业学报, 2021, 30(12): 161-171.
Wen ZHAO, Ya-li YIN, Shi-xiong LI, Yan LIU, Jing-jing LIU, Yi-ling DONG, Shi-feng SU, Ling-he JI. The characteristics of bacterial communities in different vegetation types in the Qilian Mountains[J]. Acta Prataculturae Sinica, 2021, 30(12): 161-171.
样地类型 Grassland type | 植被盖度 Coverage (%) | 物种丰富度 Species richness | 主要物种组成 Dominant species composition |
---|---|---|---|
高寒草甸Alpine meadow (AM) | 85.42±7.78b | 22.00±0.33a | 矮嵩草K. humilis、垂穗披碱草E. nutans、草地早熟禾P. pratensis、高山嵩草K. pygmaea |
人工草地Cultivated grassland (CG) | 81.92±4.61b | 10.92±0.94b | 草地早熟禾P. pratensis、芒洽草K. litvinowii、中华羊茅F. sinensis、冷地早熟禾P. crymophila |
沼泽化草甸Swamp meadow (SW) | 96.42±2.61a | 12.67±1.17b | 青藏苔草C. moorcroftii、线叶嵩草K. capillifolia、 矮嵩草K. humilis |
表1 不同草地类型植被盖度及物种丰富度
Table 1 Vegetation coverage and species richness in different grassland types
样地类型 Grassland type | 植被盖度 Coverage (%) | 物种丰富度 Species richness | 主要物种组成 Dominant species composition |
---|---|---|---|
高寒草甸Alpine meadow (AM) | 85.42±7.78b | 22.00±0.33a | 矮嵩草K. humilis、垂穗披碱草E. nutans、草地早熟禾P. pratensis、高山嵩草K. pygmaea |
人工草地Cultivated grassland (CG) | 81.92±4.61b | 10.92±0.94b | 草地早熟禾P. pratensis、芒洽草K. litvinowii、中华羊茅F. sinensis、冷地早熟禾P. crymophila |
沼泽化草甸Swamp meadow (SW) | 96.42±2.61a | 12.67±1.17b | 青藏苔草C. moorcroftii、线叶嵩草K. capillifolia、 矮嵩草K. humilis |
样地类型 Grassland type | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 有机质碳 TOC (g·kg-1) | pH | 含水量 SWC (%) | 氨态氮AN (mg·kg-1) | 硝态氮NN (mg·kg-1) |
---|---|---|---|---|---|---|---|
高寒草甸AM | 3.03±1.12b | 0.59±0.06b | 33.90±2.56b | 6.89±0.03a | 20.05±1.21b | 2.79±0.45a | 0.55±0.07c |
人工草地CG | 1.52±0.42b | 0.61±0.02b | 19.45±0.92b | 7.31±0.27a | 13.90±1.18c | 1.56±0.26a | 1.95±0.25b |
沼泽化草甸SW | 6.68±1.24a | 1.05±0.05a | 172.69±15.34a | 7.21±0.17a | 49.19±1.70a | 3.07±1.05a | 3.59±0.61a |
表2 土壤基本理化性质
Table 2 Basic soil physical and chemical properties in the three investigated grassland (n=4)
样地类型 Grassland type | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 有机质碳 TOC (g·kg-1) | pH | 含水量 SWC (%) | 氨态氮AN (mg·kg-1) | 硝态氮NN (mg·kg-1) |
---|---|---|---|---|---|---|---|
高寒草甸AM | 3.03±1.12b | 0.59±0.06b | 33.90±2.56b | 6.89±0.03a | 20.05±1.21b | 2.79±0.45a | 0.55±0.07c |
人工草地CG | 1.52±0.42b | 0.61±0.02b | 19.45±0.92b | 7.31±0.27a | 13.90±1.18c | 1.56±0.26a | 1.95±0.25b |
沼泽化草甸SW | 6.68±1.24a | 1.05±0.05a | 172.69±15.34a | 7.21±0.17a | 49.19±1.70a | 3.07±1.05a | 3.59±0.61a |
样地类型 Grassland type | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index |
---|---|---|---|
高寒草甸AM | 10.40±0.08a | 0.997±0.00a | 6873.95±147.92b |
人工草地CG | 10.44±0.06a | 0.995±0.00a | 7284.95±83.43a |
沼泽化草甸SW | 10.09±0.21a | 0.996±0.00a | 6242.71±174.26c |
表3 不同草地类型土壤细菌群落丰富度和多样性指数
Table 3 Richness and diversity indices of bacteria communities in different grassland types
样地类型 Grassland type | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index |
---|---|---|---|
高寒草甸AM | 10.40±0.08a | 0.997±0.00a | 6873.95±147.92b |
人工草地CG | 10.44±0.06a | 0.995±0.00a | 7284.95±83.43a |
沼泽化草甸SW | 10.09±0.21a | 0.996±0.00a | 6242.71±174.26c |
属 Genus | 相对丰度Relative abundance (%) | 属 Genus | 相对丰度Relative abundance (%) | ||||
---|---|---|---|---|---|---|---|
高寒草甸AM | 人工草地CG | 沼泽化草甸SW | 高寒草甸AM | 人工草地CG | 沼泽化草甸SW | ||
RB41 | 6.5723a | 5.9649b | 3.8992c | 出芽菌属Gemmata | 0.4400a | 0.8344a | 0.4864a |
鞘氨醇单胞菌属Sphingomonas | 3.4321b | 7.9123a | 1.6827c | 小梨形菌属Pirellula | 0.3909a | 0.5705a | 0.6451a |
Candidatus_Udaeobacter | 1.8633a | 1.3778a | 1.6573a | Massilia | 0.2445b | 0.4549b | 0.8326a |
慢生根瘤菌属Bradyrhizobium | 2.6293a | 1.6249b | 0.3497c | MND1 | 0.4259b | 0.5469a | 0.4759ab |
硝化螺旋菌属 Nitrospira | 0.9483c | 1.3252b | 2.0868a | 中慢生根瘤菌属Mesorhizobium | 0.6477a | 0.4514b | 0.2822c |
芽单胞菌属Gemmatimonas | 0.7818b | 1.5259a | 0.2182c | Haliangium | 0.4672a | 0.3295b | 0.4785a |
Pir4_lineage | 0.9194a | 0.8063a | 0.7739a | 土微菌属Pedomicrobium | 0.6258a | 0.3523b | 0.2962b |
假单胞菌属Pseudomonas | 0.3024b | 0.1648b | 1.5890a | Ellin6067 | 0.3637b | 0.5294a | 0.3804b |
Subgroup_10 | 0.4584b | 1.2472a | 0.1920c | 类芽孢杆菌属Paenibacillus | 1.1061a | 0.0543b | 0.0806b |
CL500-29_marine_group | 0.7379a | 0.5373b | 0.4891b | 黄杆菌属Flavobacterium | 0.0395b | 0.1543b | 1.0167a |
表4 不同草地土壤细菌属水平群落信息
Table 4 Information regarding the bacterial community at the genus level in different grassland types
属 Genus | 相对丰度Relative abundance (%) | 属 Genus | 相对丰度Relative abundance (%) | ||||
---|---|---|---|---|---|---|---|
高寒草甸AM | 人工草地CG | 沼泽化草甸SW | 高寒草甸AM | 人工草地CG | 沼泽化草甸SW | ||
RB41 | 6.5723a | 5.9649b | 3.8992c | 出芽菌属Gemmata | 0.4400a | 0.8344a | 0.4864a |
鞘氨醇单胞菌属Sphingomonas | 3.4321b | 7.9123a | 1.6827c | 小梨形菌属Pirellula | 0.3909a | 0.5705a | 0.6451a |
Candidatus_Udaeobacter | 1.8633a | 1.3778a | 1.6573a | Massilia | 0.2445b | 0.4549b | 0.8326a |
慢生根瘤菌属Bradyrhizobium | 2.6293a | 1.6249b | 0.3497c | MND1 | 0.4259b | 0.5469a | 0.4759ab |
硝化螺旋菌属 Nitrospira | 0.9483c | 1.3252b | 2.0868a | 中慢生根瘤菌属Mesorhizobium | 0.6477a | 0.4514b | 0.2822c |
芽单胞菌属Gemmatimonas | 0.7818b | 1.5259a | 0.2182c | Haliangium | 0.4672a | 0.3295b | 0.4785a |
Pir4_lineage | 0.9194a | 0.8063a | 0.7739a | 土微菌属Pedomicrobium | 0.6258a | 0.3523b | 0.2962b |
假单胞菌属Pseudomonas | 0.3024b | 0.1648b | 1.5890a | Ellin6067 | 0.3637b | 0.5294a | 0.3804b |
Subgroup_10 | 0.4584b | 1.2472a | 0.1920c | 类芽孢杆菌属Paenibacillus | 1.1061a | 0.0543b | 0.0806b |
CL500-29_marine_group | 0.7379a | 0.5373b | 0.4891b | 黄杆菌属Flavobacterium | 0.0395b | 0.1543b | 1.0167a |
变量Variables | P | r |
---|---|---|
有机质碳TOC | 0.001 | 0.857 |
全磷TP | 0.001 | 0.837 |
含水量SWC | 0.001 | 0.792 |
硝态氮NN | 0.007 | 0.434 |
全氮TN | 0.003 | 0.419 |
氨态氮AN | 0.024 | 0.449 |
土壤酸碱度pH | 0.462 | -0.027 |
表5 土壤理化性质与细菌群落结构的相关性
Table 5 Correlation between bacterial communities and soil properties
变量Variables | P | r |
---|---|---|
有机质碳TOC | 0.001 | 0.857 |
全磷TP | 0.001 | 0.837 |
含水量SWC | 0.001 | 0.792 |
硝态氮NN | 0.007 | 0.434 |
全氮TN | 0.003 | 0.419 |
氨态氮AN | 0.024 | 0.449 |
土壤酸碱度pH | 0.462 | -0.027 |
图6 土壤细菌群落与环境因子间的典范对应分析TN: 全氮Total nitrogen; TP: 全磷Total phosphorus; SWC: 土壤含水量Soil water content; TOC: 土壤有机质碳Total organic carbon; AN: 氨态氮Ammonia nitrogen; NN: 硝态氮Nitrate nitrogen.
Fig.6 Canonical correspondence analysis of bacterial communities with basic soil physical and environmental factors
细菌 Bacteria | 全氮TN | 有机质碳TOC | 全磷TP | pH | 土壤含水量SWC | 氨态氮AN | 硝态氮NN |
---|---|---|---|---|---|---|---|
变形菌门Proteobacteria | 0.78* | 0.88** | 0.91** | -0.02 | 0.85** | 0.61 | 0.66 |
酸杆菌门Acidobacteria | -0.39 | -0.75* | -0.61 | -0.14 | -0.73* | -0.26 | -0.71* |
放线菌门Actinobacteria | -0.51 | -0.82** | -0.81** | -0.34 | -0.76* | -0.21 | -0.95** |
浮霉菌门Planctomycetes | -0.32 | -0.10 | -0.28 | 0.10 | -0.10 | -0.26 | 0.01 |
表6 土壤理化性质与门水平优势细菌相关性
Table 6 Correlation between properties and soil dominant bacteria at the phylum level
细菌 Bacteria | 全氮TN | 有机质碳TOC | 全磷TP | pH | 土壤含水量SWC | 氨态氮AN | 硝态氮NN |
---|---|---|---|---|---|---|---|
变形菌门Proteobacteria | 0.78* | 0.88** | 0.91** | -0.02 | 0.85** | 0.61 | 0.66 |
酸杆菌门Acidobacteria | -0.39 | -0.75* | -0.61 | -0.14 | -0.73* | -0.26 | -0.71* |
放线菌门Actinobacteria | -0.51 | -0.82** | -0.81** | -0.34 | -0.76* | -0.21 | -0.95** |
浮霉菌门Planctomycetes | -0.32 | -0.10 | -0.28 | 0.10 | -0.10 | -0.26 | 0.01 |
1 | Zhang J G, Wang L D, Yao T, et al. Plant community structure and species diversity differences in alpine grassland in the Qilian Mountains with different levels of degradation. Acta Prataculturae Sinica, 2019, 28(5): 15-25. |
张建贵, 王理德, 姚拓, 等. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究. 草业学报, 2019, 28(5): 15-25. | |
2 | Song W H, Cheng H B. Temporal and spatial variation of land cover in Gansu Qilian Mountains Nature Reserve from 2000 to 2016. Journal of Anhui Agricultural Sciences, 2018, 46(30): 80-85. |
宋伟宏, 程慧波. 2000-2016年甘肃祁连山自然保护区土地覆被时空变化分析. 安徽农业科学, 2018, 46(30): 80-85. | |
3 | Li Z M, Du R, Wang Y L, et al. Comparison of diurnal variation of nitrous oxide fluxes from grassland of China. China Environmental Science, 2012, 32(12): 2128-2133. |
李梓铭, 杜睿, 王亚玲, 等. 中国草地N2O通量日变化观测对比研究. 中国环境科学, 2012, 32(12): 2128-2133. | |
4 | Yang Y S, Li Z, Li H Q, et al. Soil physico-chemical properties and vegetation structure along an elevation gradient and implications for the response of alpine plant development to climate change on the northern slopes of the Qilian Mountains. Journal of Mountain Science, 2018, 15(5): 89-102. |
5 | Li J, Zhang F, Lin L, et al. Response of the plant community and soil water status to alpine Kobresia meadow degradation gradients on the Qinghai-Tibetan Plateau, China. Ecological Research, 2015, 30(4): 589-596. |
6 | Qian D W, Cao G M, Du Y G, et al. Impacts of climate change and human factors on land cover change in inland mountain protected areas: A case study of the Qilian Mountain National Nature Reserve in China. Environmental Monitoring and Assessment, 2019, 191(8): 1-21. |
7 | Ren Y L, Lu M, Fan F X, et al. The relationship between soil fungi and physico-chemical properties in swamp meadow of plateau wetla. Ecological Science, 2019, 38(1): 42-49. |
任玉连, 陆梅, 范方喜, 等. 高原湿地沼泽化草甸土壤真菌与理化性质的关系. 生态科学, 2019, 38(1): 42-49. | |
8 | Yang Y F, Gao Y, Wang S P, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME Journal, 2014, 8(2): 430-440. |
9 | Ma Y S, Lang B N, Li Q Y, et al. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Pratacultural Science, 2002, 19(9): 1-5. |
马玉寿, 郎百宁, 李青云, 等. 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 2002, 19(9): 1-5. | |
10 | Li W, Wang J, Zhang X J, et al. Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau. Ecological Engineering, 2018(111): 134-142. |
11 | Vaida I, Pcurar F, Rotar I, et al. Changes in diversity due to long-term management in a high natural value grassland. Plants, 2021, 10(4): 739. |
12 | Hill G, Mitkowski N, Aldrich-Wolfe L, et al. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 2000(15): 25-36. |
13 | Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005, 309: 1387-1390. |
14 | Slaughter L C, Weintraub M N, Mcculley R L. Seasonal effects stronger than Three-Year climate manipulation on grassland soil microbial community. Soil Science Society of America Journal, 2015, 79(5): 1352. |
15 | Craig L, Philip W, Andrew B, et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health? Environment International, 2019, 129: 105-117. |
16 | Kang B T, Hou F J, Bowatte S. Characterization of soil bacterial communities in alpine and desert grasslands in the Qilian Mountain range. Pratacultural Science, 2020, 37(1): 10-19. |
康宝天, 侯扶江, Bowatte S. 祁连山高寒草甸和荒漠草原土壤细菌群落的结构特征. 草业科学, 2020, 37(1): 10-19. | |
17 | Liu Y X, Cao P X, Ma H M, et al. Research progress on soil microbial diversity and its influencing factors in Qinghai-Tibet Plateau. Environmental Ecology, 2019(6): 1-7. |
刘怡萱, 曹鹏熙, 马红梅, 等. 青藏高原土壤微生物多样性及其影响因素研究进展. 环境生态学, 2019(6): 1-7. | |
18 | Wang S, Wang X, Han X, et al. Higher precipitation strengthens the microbial interactions in semi-arid grassland soil. Global Ecology and Biogeography, 2018, 27(5): 1-9. |
19 | Guan X Y, Wang J F, Zhao H, et al. Soil bacterial communities shaped by geochemical factors and land use in a less-explored area, Tibetan Plateau. BMC Genomics, 2013, 14: 820-833. |
20 | Chen X H, Yang J. Environmental factors and soil bacterial communities in the degraded alpine grassland of eastern Qilian Mountains. Journal of West China Forestry Science, 2020, 49(1): 1-8. |
陈雪花, 杨静. 祁连山东部不同退化草地土壤细菌群落与环境因子的关系研究. 西部林业科学, 2020, 49(1): 1-8. | |
21 | Wu Y H. The flora of Datong river valley in Qinghai, China. Acta Botanica Yunnanica, 2004(4): 355-372. |
吴玉虎. 大通河流域植物区系. 云南植物研究, 2004(4): 355-372. | |
22 | Yang J H, Wang C L, Dai H L. Soil agrochemical analysis and environmental monitoring. Beijing: China Land Press, 2008: 138-164. |
杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008: 138-164. | |
23 | Guo M, Wu F, Hao G, et al. Bacillus subtilis improves immunity and disease resistance in rabbits. Frontiers in Immunology, 2017, 8: 354. |
24 | Pruesse E, Quast C, Knitte K, et al. Silva: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 2007, 35(21): 7188-7196. |
25 | Geng D Z, Huang J H, Huo N, et al. Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslan. Chinese Journal of Applied Ecology, 2020, 31(4): 1365-1377. |
耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征. 应用生态学报, 2020, 31(4): 1365-1377. | |
26 | Dong Q M, Ma Y S, Zhao X Q, et al. Study on management technology for black-soil-type degraded artificial grassland in Yangtze and Yellow River Headwater Region. Pratacultural Science, 2007, 24(8): 9-15. |
董全民, 马玉寿, 赵新全, 等. 江河源区“黑土型”退化人工草地管理技术研究. 草业科学, 2007, 24(8): 9-15. | |
27 | Zhu Y L, Zhang H Y, Chen Y Q, et al. Soil properties and microbial diversity at the frontier of Laohugou glacier retreat in Qilian Mountains. Current Microbiology, 2020, 77(3): 425-433. |
28 | Wu W X, Zhang L, Huang X Q, et al. Difference in soil microbial diversity in artificial grasslands of the Northwest Plateau of Sichuan Province. Acta Prataculturae Sinica, 2019, 28(3): 29-41. |
伍文宪, 张蕾, 黄小琴, 等. 川西北高寒牧区不同人工草地对土壤微生物多样性影响. 草业学报, 2019, 28(3): 29-41. | |
29 | Yang Y D, Wang Z M, Zeng Z H. Effects of long-term different fertilization and irrigation managements on soil bacterial abundance, diversity and composition. Scientia Agricultura Sinica, 2018, 51(2): 290-301. |
杨亚东, 王志敏, 曾昭海. 长期施肥和灌溉对土壤细菌数量、多样性和群落结构的影响. 中国农业科学, 2018, 51(2): 290-301. | |
30 | Lu M, Tian K, Mo J F. Study on the soil nutrients and microbiological characteristics of four utilization types of plateau wetlands Napahai. Research of Soil and Water Conservation, 2011, 18(2): 241-245. |
陆梅, 田昆, 莫剑锋. 高原湿地纳帕海4种湿地利用类型土壤养分和微生物特征研究. 水土保持研究, 2011, 18(2): 241-245. | |
31 | Wang Y, Sun C C, Zhou J H, et al. Effects of biochar addition on soil bacterial community in semi-arid region. China Environmental Science, 2019, 39(5): 2170-2179. |
王颖, 孙层层, 周际海, 等. 生物炭添加对半干旱区土壤细菌群落的影响. 中国环境科学, 2019, 39(5): 2170-2179. | |
32 | Zhang X F, Zhao L, Xu J, et al. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 2013, 114(4): 1054-1065. |
33 | Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture Ecosystems and Environment, 2016, 222: 213-222. |
34 | Chu H, Sun H, Tripathi B M, et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environmental Microbiology, 2016, 18(5): 1523-1533. |
35 | Nielsen U N, Osler G H R, Campbell C D, et al. The influence of vegetation type soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography, 2010, 37(7): 1317-1328. |
36 | Rui J, Li J, Wang S, et al. Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet Plateau. Applied and Environmental Microbiology, 2015, 81(17): 6070-6077. |
37 | Bazylinski D A, Williams T J, Lefevre C T, et al. Magnetococcus marinus gen. nov. sp. nov. a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov. Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(3): 801-808. |
38 | Lu H, Zhao H, Sheng Y Y, et al. Soil prokaryotic community characteristics in two alpine meadow types based on high-throughput sequencing techniques. Acta Ecologica Sinica, 2018, 38(22): 8080-8087. |
卢慧, 赵珩, 盛玉钰, 等. 基于高通量测序的两种高寒草甸土壤原核生物群落特征研究. 生态学报, 2018, 38(22): 8080-8087. | |
39 | Zhu P, Chen R S, Song Y X, et al. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China. Acta Ecologica Sinica, 2017, 37(10): 3505-3514. |
朱平, 陈仁升, 宋耀选, 等. 祁连山中部4种典型植被类型土壤细菌群落结构差异. 生态学报, 2017, 37(10): 3505-3514. | |
40 | Zhang Y G, Su X J, Cong J, et al. Variation of soil microbial community along elevation in the Shennongjia Mountain. Scientia Silvae Sinicae, 2014, 50(9): 161-166. |
张于光, 宿秀江, 丛静, 等. 神农架土壤微生物群落的海拔梯度变化. 林业科学, 2014, 50(9): 161-166. | |
41 | Vaninsberghe D, Maas K R, Cardenas E, et al. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME Journal, 2015, 9(11): 16-31. |
[1] | 付刚, 王俊皓, 李少伟, 何萍. 藏北高寒草地牧草营养品质对放牧的响应机制[J]. 草业学报, 2021, 30(9): 38-50. |
[2] | 贺翔, 白梅梅, 徐长林, 宋美娟, 汪鹏斌, 鱼小军. 东祁连山小叶金露梅+杯腺柳灌丛草地植被和土壤对其自然恢复演替的响应[J]. 草业学报, 2021, 30(8): 12-24. |
[3] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[4] | 李争艳, 徐智明, 师尚礼, 贺春贵. 江淮地区不同轮茬作物对苜蓿产量及根际土壤质量的影响[J]. 草业学报, 2019, 28(8): 28-39. |
[5] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[6] | 张建贵, 王理德, 姚拓, 李海云, 高亚敏, 杨晓玫, 李昌宁, 李琦, 冯影, 胡彦婷. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究[J]. 草业学报, 2019, 28(5): 15-25. |
[7] | 刘玉祯, 曹文侠, 王金兰, 李文, 辛雨琼, 王世林, 王小军. 祁连山东段不同类型灌丛斑块土壤特征对围封的响应[J]. 草业学报, 2019, 28(11): 32-45. |
[8] | 景美玲, 马玉寿, 李世雄, 王彦龙. 大通河上游16种多年生禾草引种试验研究[J]. 草业学报, 2017, 26(6): 76-88. |
[9] | 黄泽, 田福平, 刘玉, 张静鸽, 苗海涛, 武高林. 黄土高原不同草地类型对水稳性团聚体粒径分布及稳定性的影响[J]. 草业学报, 2017, 26(11): 216-221. |
[10] | 芦光新, 李宗仁, 李希来, 王军邦, 吴楚, 李欣, 张更兄, 孙乾, 李峰科, 郑慧美. 三江源区高寒草地不同生境土壤可培养纤维素分解真菌群落结构特征研究[J]. 草业学报, 2016, 25(1): 76-87. |
[11] | 何玮, 郭琳微, 樊鹏辉, 郭斌, 傅艳萍, 尉亚辉. 黄花棘豆在腐解过程中的化感作用及其土壤细菌群落结构分析[J]. 草业学报, 2015, 24(7): 21-29. |
[12] | 朱平, 陈仁升, 宋耀选, 刘光琇, 陈拓, 张威. 祁连山不同植被类型土壤微生物群落多样性差异[J]. 草业学报, 2015, 24(6): 75-84. |
[13] | 孙涛,陈强,赵亚雄,龙瑞军. 祁连山高山草地毒杂草侵入对蝗虫相对多度的影响[J]. 草业学报, 2013, 22(3): 85-. |
[14] | 杨阳,韩国栋,李元恒,陈志芳,王成杰. 内蒙古不同草原类型土壤呼吸对放牧强度及水热因子的响应[J]. 草业学报, 2012, 21(6): 8-14. |
[15] | 索南吉,谈嫣蓉,朱炜歆,顾振宽,杜国祯. 青藏高原东缘不同草地类型土壤酶活性研究[J]. 草业学报, 2012, 21(4): 10-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||