草业学报 ›› 2022, Vol. 31 ›› Issue (7): 38-49.DOI: 10.11686/cyxb2021202
李媛媛1,2,3(), 徐婷婷4, 艾喆3, 周兆娜3, 马飞1,2()
收稿日期:
2021-05-12
修回日期:
2021-08-05
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
马飞
作者简介:
E-mail: mafei05@163.com基金资助:
Yuan-yuan LI1,2,3(), Ting-ting XU4, Zhe AI3, Zhao-na ZHOU3, Fei MA1,2()
Received:
2021-05-12
Revised:
2021-08-05
Online:
2022-07-20
Published:
2022-06-01
Contact:
Fei MA
摘要:
以不同地理种群的中间锦鸡儿和小叶锦鸡儿为研究对象,利用高通量测序技术,比较分析了2种锦鸡儿不同地理种群根际土壤细菌多样性、物种组成和丰度的差异及其与植物功能性状的关系,为深入理解锦鸡儿属植物适应干旱环境的微生物学机制提供数据支持。结果表明,2种锦鸡儿根际土壤细菌隶属于22门62纲131目185科304属。优势细菌门为变形菌门、酸杆菌门、拟杆菌门和放线菌门。在属水平上,根瘤菌属、鞘氨醇单胞菌属、RB41和芽孢杆菌属为优势属。中间锦鸡儿与小叶锦鸡儿根际土壤细菌多样性指数(Chao1、ACE、香农和辛普森指数)无明显差异,但主坐标分析表明2种锦鸡儿根际土壤细菌群落结构存在显著差异(P<0.05)。Mantel检验分析表明植物功能性状与根际土壤细菌群落结构存在显著相关性,且冗余分析显示株高、叶干物质含量、比叶面积、叶厚度和叶长是驱动根际土壤细菌群落结构构建的主要性状(P<0.05)。综上所述,中间锦鸡儿和小叶锦鸡儿根际土壤细菌群落结构存在显著性差异,且根际土壤细菌群落结构的变化受到植物性状的显著影响。
李媛媛, 徐婷婷, 艾喆, 周兆娜, 马飞. 锦鸡儿属植物功能性状与根际土壤细菌群落结构的关系[J]. 草业学报, 2022, 31(7): 38-49.
Yuan-yuan LI, Ting-ting XU, Zhe AI, Zhao-na ZHOU, Fei MA. Relationship between plant functional traits and rhizosphere bacterial community structure of two Caragana species[J]. Acta Prataculturae Sinica, 2022, 31(7): 38-49.
采样点Sample site | 种名Name | 经度Longitude (° E) | 纬度Latitude (° N) | 海拔Altitude (m) |
---|---|---|---|---|
CL1 | 中间锦鸡儿C. liouana | 107.45 | 37.82 | 1431 |
CL2 | 中间锦鸡儿C. liouana | 107.69 | 38.18 | 1342 |
CL3 | 中间锦鸡儿C. liouana | 108.35 | 38.88 | 1369 |
CL4 | 中间锦鸡儿C. liouana | 108.75 | 38.60 | 1330 |
CL5 | 中间锦鸡儿C. liouana | 108.69 | 37.99 | 1223 |
CL6 | 中间锦鸡儿C. liouana | 110.24 | 38.78 | 1220 |
CL7 | 中间锦鸡儿C. liouana | 111.18 | 39.40 | 932 |
CL8 | 中间锦鸡儿C. liouana | 110.93 | 39.06 | 1035 |
CL9 | 中间锦鸡儿C. liouana | 110.28 | 39.33 | 1282 |
CL10 | 中间锦鸡儿C. liouana | 109.68 | 39.12 | 1278 |
CL11 | 中间锦鸡儿C. liouana | 108.81 | 38.54 | 1330 |
CM1 | 小叶锦鸡儿C.microphylla | 115.22 | 41.89 | 1527 |
CM2 | 小叶锦鸡儿C.microphylla | 116.23 | 42.24 | 1419 |
CM3 | 小叶锦鸡儿C.microphylla | 119.15 | 42.99 | 645 |
CM4 | 小叶锦鸡儿C.microphylla | 121.08 | 42.50 | 454 |
CM5 | 小叶锦鸡儿C.microphylla | 122.28 | 43.07 | 240 |
CM6 | 小叶锦鸡儿C.microphylla | 120.95 | 43.64 | 260 |
CM7 | 小叶锦鸡儿C.microphylla | 119.01 | 43.64 | 742 |
CM8 | 小叶锦鸡儿C.microphylla | 115.19 | 42.31 | 1390 |
CM9 | 小叶锦鸡儿C.microphylla | 114.74 | 40.87 | 961 |
CM10 | 小叶锦鸡儿C.microphylla | 112.12 | 41.24 | 1826 |
表1 中间锦鸡儿和小叶锦鸡儿采样点地理信息
Table 1 Geographical information of each sampling site of C. liouana and C. microphylla
采样点Sample site | 种名Name | 经度Longitude (° E) | 纬度Latitude (° N) | 海拔Altitude (m) |
---|---|---|---|---|
CL1 | 中间锦鸡儿C. liouana | 107.45 | 37.82 | 1431 |
CL2 | 中间锦鸡儿C. liouana | 107.69 | 38.18 | 1342 |
CL3 | 中间锦鸡儿C. liouana | 108.35 | 38.88 | 1369 |
CL4 | 中间锦鸡儿C. liouana | 108.75 | 38.60 | 1330 |
CL5 | 中间锦鸡儿C. liouana | 108.69 | 37.99 | 1223 |
CL6 | 中间锦鸡儿C. liouana | 110.24 | 38.78 | 1220 |
CL7 | 中间锦鸡儿C. liouana | 111.18 | 39.40 | 932 |
CL8 | 中间锦鸡儿C. liouana | 110.93 | 39.06 | 1035 |
CL9 | 中间锦鸡儿C. liouana | 110.28 | 39.33 | 1282 |
CL10 | 中间锦鸡儿C. liouana | 109.68 | 39.12 | 1278 |
CL11 | 中间锦鸡儿C. liouana | 108.81 | 38.54 | 1330 |
CM1 | 小叶锦鸡儿C.microphylla | 115.22 | 41.89 | 1527 |
CM2 | 小叶锦鸡儿C.microphylla | 116.23 | 42.24 | 1419 |
CM3 | 小叶锦鸡儿C.microphylla | 119.15 | 42.99 | 645 |
CM4 | 小叶锦鸡儿C.microphylla | 121.08 | 42.50 | 454 |
CM5 | 小叶锦鸡儿C.microphylla | 122.28 | 43.07 | 240 |
CM6 | 小叶锦鸡儿C.microphylla | 120.95 | 43.64 | 260 |
CM7 | 小叶锦鸡儿C.microphylla | 119.01 | 43.64 | 742 |
CM8 | 小叶锦鸡儿C.microphylla | 115.19 | 42.31 | 1390 |
CM9 | 小叶锦鸡儿C.microphylla | 114.74 | 40.87 | 961 |
CM10 | 小叶锦鸡儿C.microphylla | 112.12 | 41.24 | 1826 |
植物功能性状 Functional trait | 中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||||
---|---|---|---|---|---|---|
均值±标准误差Mean±SE | F | P | 均值±标准误差Mean±SE | F | P | |
叶长LL (mm) | 10.54±0.85 | 9.81 | <0.001 | 9.01±0.58 | 3.70 | 0.007 |
叶宽LW (mm) | 5.41±0.50 | 5.75 | <0.001 | 5.52±0.54 | 5.73 | 0.001 |
叶厚度LT (mm) | 0.25±0.01 | 5.44 | <0.001 | 0.24±0.01 | 3.94 | 0.005 |
株高Pheight (cm) | 174.66±21.30 | 6.33 | <0.001 | 102.85±50.10 | 23.52 | <0.001 |
冠幅CW (cm2) | 247.42±26.44 | 3.98 | 0.003 | 237.77±59.56 | 11.15 | <0.001 |
比叶面积SLA (cm2·g-1) | 142.38±17.39 | 14.64 | <0.001 | 147.88±20.23 | 3.79 | 0.006 |
叶干物质含量LDMC (mg·g-1) | 0.29±0.04 | 27.21 | <0.001 | 0.32±0.03 | 5.50 | 0.001 |
叶片碳含量LC (mg·g-1) | 453.83±4.01 | 1.40 | 0.243 | 450.85±6.09 | 5.86 | <0.001 |
叶片氮含量LN (mg·g-1) | 39.92±4.33 | 10.13 | <0.001 | 40.63±7.01 | 14.02 | <0.001 |
叶片磷含量LP (mg·g-1) | 3.02±0.55 | 3.20 | 0.011 | 2.85±0.39 | 2.12 | 0.077 |
表2 中间锦鸡儿和小叶锦鸡儿不同地理种群植物功能性状
Table 2 The plant functional traits of C. liouana and C. microphylla across different geographical populations
植物功能性状 Functional trait | 中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||||
---|---|---|---|---|---|---|
均值±标准误差Mean±SE | F | P | 均值±标准误差Mean±SE | F | P | |
叶长LL (mm) | 10.54±0.85 | 9.81 | <0.001 | 9.01±0.58 | 3.70 | 0.007 |
叶宽LW (mm) | 5.41±0.50 | 5.75 | <0.001 | 5.52±0.54 | 5.73 | 0.001 |
叶厚度LT (mm) | 0.25±0.01 | 5.44 | <0.001 | 0.24±0.01 | 3.94 | 0.005 |
株高Pheight (cm) | 174.66±21.30 | 6.33 | <0.001 | 102.85±50.10 | 23.52 | <0.001 |
冠幅CW (cm2) | 247.42±26.44 | 3.98 | 0.003 | 237.77±59.56 | 11.15 | <0.001 |
比叶面积SLA (cm2·g-1) | 142.38±17.39 | 14.64 | <0.001 | 147.88±20.23 | 3.79 | 0.006 |
叶干物质含量LDMC (mg·g-1) | 0.29±0.04 | 27.21 | <0.001 | 0.32±0.03 | 5.50 | 0.001 |
叶片碳含量LC (mg·g-1) | 453.83±4.01 | 1.40 | 0.243 | 450.85±6.09 | 5.86 | <0.001 |
叶片氮含量LN (mg·g-1) | 39.92±4.33 | 10.13 | <0.001 | 40.63±7.01 | 14.02 | <0.001 |
叶片磷含量LP (mg·g-1) | 3.02±0.55 | 3.20 | 0.011 | 2.85±0.39 | 2.12 | 0.077 |
样本 Sample | 有效序列 Effective sequence | 优质序列 High quality sequence | 物种数 Observed OTUs | Chao 1 指数 Chao 1 index | ACE指数 ACE index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖度 Coverage(%) |
---|---|---|---|---|---|---|---|---|
中间锦鸡儿C. liouana | 80712±2948 | 68668±2697 | 1069±17 | 1193±15.88 | 1172±14.65 | 7.94±0.12 | 0.98±0.00 | 99.43±0.00 |
小叶锦鸡儿C. microphylla | 84053±3284 | 73043±3005 | 1048±28 | 1172±27.57 | 1152±25.73 | 8.10±0.18 | 0.98±0.00 | 99.45±0.00 |
表3 中间锦鸡儿和小叶锦鸡儿根际土壤样品序列数统计和多样性指数
Table 3 Sample sequence number statistics and diversity index in rhizosphere soil of C. liouana and C. microphylla
样本 Sample | 有效序列 Effective sequence | 优质序列 High quality sequence | 物种数 Observed OTUs | Chao 1 指数 Chao 1 index | ACE指数 ACE index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖度 Coverage(%) |
---|---|---|---|---|---|---|---|---|
中间锦鸡儿C. liouana | 80712±2948 | 68668±2697 | 1069±17 | 1193±15.88 | 1172±14.65 | 7.94±0.12 | 0.98±0.00 | 99.43±0.00 |
小叶锦鸡儿C. microphylla | 84053±3284 | 73043±3005 | 1048±28 | 1172±27.57 | 1152±25.73 | 8.10±0.18 | 0.98±0.00 | 99.45±0.00 |
图1 中间锦鸡儿和小叶锦鸡儿根际土壤细菌群落结构的主坐标分析
Fig.1 Principal coordinate analysis of soil bacterial community composition in rhizosphere of C. liouana and C. microphylla
门 Phyla | 属 Genera | 相对丰度Relative abundance (%) | |
---|---|---|---|
中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||
变形菌门Proteobacteria | 55.88±1.16** | 46.21±2.23 | |
根瘤菌属Rhizobium | 9.98±1.13** | 3.24±0.39 | |
鞘氨醇单胞菌属Sphingomonas | 5.38±0.28 | 6.65±0.42* | |
类固醇杆菌属Steroidobacter | 2.37±0.20 | 2.07±0.18 | |
中慢生根瘤菌属Mesorhizobium | 1.24±0.20 | 1.66±1.14 | |
溶杆菌属Lysobacter | 0.73±0.07* | 0.54±0.06 | |
酸杆菌门Acidobacteria | 12.51±0.65 | 20.56±1.71** | |
RB41 | 2.89±0.21 | 7.18±0.77** | |
拟杆菌门Bacteroidetes | 10.72±0.66** | 7.71±0.45 | |
放线菌门Actinobacteria | 6.78±0.32 | 9.88±0.56** | |
红色杆菌属Rubrobacter | 0.42±0.06 | 1.95±0.26** | |
链霉菌属Streptomyces | 0.86±0.07 | 1.28±0.15** | |
Patescibacteria | 4.49±0.40 | 3.29±0.55 | |
厚壁菌门Firmicutes | 3.31±0.33 | 4.19±0.49 | |
芽孢杆菌属Bacillus | 1.98±0.23 | 3.06±0.35* | |
芽单胞菌门 Gemmatimonadetes | 2.09±0.16 | 3.02±0.24** | |
芽单胞菌科未分类的属Unclassified_f_Gemmatimonadaceae | 1.66±0.13 | 2.59±0.21** | |
绿弯菌门Chloroflexi | 1.94±0.11 | 2.00±0.13 |
表4 门和属水平上中间锦鸡儿和小叶锦鸡儿根际土壤细菌的丰度变化
Table 4 Changes in relative bacterial abundance at phyla and genera levels in the rhizosphere soil of C. liouana and C. microphylla
门 Phyla | 属 Genera | 相对丰度Relative abundance (%) | |
---|---|---|---|
中间锦鸡儿C. liouana | 小叶锦鸡儿C. microphylla | ||
变形菌门Proteobacteria | 55.88±1.16** | 46.21±2.23 | |
根瘤菌属Rhizobium | 9.98±1.13** | 3.24±0.39 | |
鞘氨醇单胞菌属Sphingomonas | 5.38±0.28 | 6.65±0.42* | |
类固醇杆菌属Steroidobacter | 2.37±0.20 | 2.07±0.18 | |
中慢生根瘤菌属Mesorhizobium | 1.24±0.20 | 1.66±1.14 | |
溶杆菌属Lysobacter | 0.73±0.07* | 0.54±0.06 | |
酸杆菌门Acidobacteria | 12.51±0.65 | 20.56±1.71** | |
RB41 | 2.89±0.21 | 7.18±0.77** | |
拟杆菌门Bacteroidetes | 10.72±0.66** | 7.71±0.45 | |
放线菌门Actinobacteria | 6.78±0.32 | 9.88±0.56** | |
红色杆菌属Rubrobacter | 0.42±0.06 | 1.95±0.26** | |
链霉菌属Streptomyces | 0.86±0.07 | 1.28±0.15** | |
Patescibacteria | 4.49±0.40 | 3.29±0.55 | |
厚壁菌门Firmicutes | 3.31±0.33 | 4.19±0.49 | |
芽孢杆菌属Bacillus | 1.98±0.23 | 3.06±0.35* | |
芽单胞菌门 Gemmatimonadetes | 2.09±0.16 | 3.02±0.24** | |
芽单胞菌科未分类的属Unclassified_f_Gemmatimonadaceae | 1.66±0.13 | 2.59±0.21** | |
绿弯菌门Chloroflexi | 1.94±0.11 | 2.00±0.13 |
图2 属水平上中间锦鸡儿和小叶锦鸡儿根际土壤细菌群落结构热图
Fig.2 Heat map of bacterial community composition in rhizosphere soil of C. liouana and C. microphylla at level of genus
图3 中间锦鸡儿和小叶锦鸡儿土壤细菌群落结构与植物功能性状的关系
Fig.3 The relationship between soil bacterial community composition and plant functional traits of C. liouana and C. microphylla
图4 中间锦鸡儿和小叶锦鸡儿根际土壤细菌群落结构与植物功能性状的冗余分析
Fig.4 Redundancy analysis of bacterial community composition and plant functional traits in rhizosphere soil of C. liouana and C. microphylla
植物属性 Plant attribute | 株高 Pheight | 叶干物质含量 LDMC | 比叶面积 SLA | 叶厚度 LT | 叶长 LL | 叶片磷含量 LP | 冠幅 CW | 叶宽 LW | 叶片氮含量 LN | 叶片碳含量 LC |
---|---|---|---|---|---|---|---|---|---|---|
解释度 Explains (%) | 6.5 | 5.5 | 4.7 | 4.7 | 3.4 | 1.9 | 1.6 | 1.1 | 1.0 | 0.8 |
贡献率 Contribution (%) | 20.7 | 17.8 | 15.0 | 14.9 | 10.9 | 6.2 | 5.3 | 3.5 | 3.1 | 2.6 |
F | 4.2 | 3.8 | 3.3 | 3.4 | 2.6 | 1.5 | 1.3 | 0.8 | 0.7 | 0.6 |
P | 0.002 | 0.002 | 0.022 | 0.008 | 0.016 | 0.116 | 0.248 | 0.516 | 0.632 | 0.778 |
表5 植物功能性状对土壤细菌群落结构的影响
Table 5 Effects of plant functional traits on soil bacterial community composition
植物属性 Plant attribute | 株高 Pheight | 叶干物质含量 LDMC | 比叶面积 SLA | 叶厚度 LT | 叶长 LL | 叶片磷含量 LP | 冠幅 CW | 叶宽 LW | 叶片氮含量 LN | 叶片碳含量 LC |
---|---|---|---|---|---|---|---|---|---|---|
解释度 Explains (%) | 6.5 | 5.5 | 4.7 | 4.7 | 3.4 | 1.9 | 1.6 | 1.1 | 1.0 | 0.8 |
贡献率 Contribution (%) | 20.7 | 17.8 | 15.0 | 14.9 | 10.9 | 6.2 | 5.3 | 3.5 | 3.1 | 2.6 |
F | 4.2 | 3.8 | 3.3 | 3.4 | 2.6 | 1.5 | 1.3 | 0.8 | 0.7 | 0.6 |
P | 0.002 | 0.002 | 0.022 | 0.008 | 0.016 | 0.116 | 0.248 | 0.516 | 0.632 | 0.778 |
指标 Parameter | 叶长 LL | 叶宽 LW | 叶厚度LT | 株高 Pheight | 冠幅 CW | 比叶面积SLA | 叶干物质含量LDMC | 叶片碳含量LC | 叶片氮含量LN | 叶片磷含量LP |
---|---|---|---|---|---|---|---|---|---|---|
Chao1指数Chao1 index | -0.07 | 0.05 | 0.31* | -0.23 | -0.23 | 0.08 | -0.16 | -0.22 | 0.17 | -0.02 |
ACE指数ACE index | -0.05 | 0.06 | 0.31* | -0.24 | -0.25 | 0.08 | -0.15 | -0.25* | 0.17 | -0.02 |
香农指数Shannon index | -0.14 | 0.28* | 0.25* | -0.34** | -0.18 | 0.04 | 0.03 | -0.32* | 0.27* | -0.06 |
辛普森指数Simpson index | -0.04 | 0.21 | 0.26* | -0.24 | -0.15 | -0.02 | -0.01 | -0.18 | 0.22 | -0.10 |
变形菌门Proteobacteria | 0.38** | -0.36** | 0.04 | 0.61** | 0.23 | -0.16 | -0.12 | 0.35** | -0.37** | 0.12 |
酸杆菌门Acidobacteria | -0.50** | 0.33** | -0.10 | -0.69** | -0.43** | 0.19 | 0.10 | -0.36** | 0.30* | -0.15 |
拟杆菌门Bacteroidetes | 0.49** | -0.04 | 0.11 | 0.30* | 0.01 | -0.12 | -0.05 | 0.10 | 0.03 | 0.19 |
放线菌门Actinobacteria | -0.43** | 0.24 | -0.00 | -0.54** | -0.03 | 0.18 | 0.09 | -0.22 | 0.25* | -0.06 |
Patescibacteria | 0.25 | -0.13 | -0.03 | 0.32* | 0.23 | -0.02 | -0.02 | 0.00 | -0.10 | 0.10 |
厚壁菌门Firmicutes | -0.16 | 0.03 | 0.02 | -0.13 | 0.24 | 0.04 | -0.04 | 0.08 | 0.04 | -0.32* |
芽单胞菌门Gemmatimonadetes | -0.41** | 0.43** | -0.14 | -0.56** | -0.06 | 0.20 | 0.10 | -0.30* | 0.43** | -0.10 |
绿弯菌门Chloroflexi | -0.14 | 0.17 | 0.30* | -0.20 | -0.08 | 0.14 | -0.07 | -0.19 | 0.14 | 0.03 |
表6 土壤细菌多样性指数、优势种群相对丰度与植物功能性状的相关性
Table 6 Correlation of soil bacterial diversity indices and the relative abundance of dominant taxa with plant functional traits
指标 Parameter | 叶长 LL | 叶宽 LW | 叶厚度LT | 株高 Pheight | 冠幅 CW | 比叶面积SLA | 叶干物质含量LDMC | 叶片碳含量LC | 叶片氮含量LN | 叶片磷含量LP |
---|---|---|---|---|---|---|---|---|---|---|
Chao1指数Chao1 index | -0.07 | 0.05 | 0.31* | -0.23 | -0.23 | 0.08 | -0.16 | -0.22 | 0.17 | -0.02 |
ACE指数ACE index | -0.05 | 0.06 | 0.31* | -0.24 | -0.25 | 0.08 | -0.15 | -0.25* | 0.17 | -0.02 |
香农指数Shannon index | -0.14 | 0.28* | 0.25* | -0.34** | -0.18 | 0.04 | 0.03 | -0.32* | 0.27* | -0.06 |
辛普森指数Simpson index | -0.04 | 0.21 | 0.26* | -0.24 | -0.15 | -0.02 | -0.01 | -0.18 | 0.22 | -0.10 |
变形菌门Proteobacteria | 0.38** | -0.36** | 0.04 | 0.61** | 0.23 | -0.16 | -0.12 | 0.35** | -0.37** | 0.12 |
酸杆菌门Acidobacteria | -0.50** | 0.33** | -0.10 | -0.69** | -0.43** | 0.19 | 0.10 | -0.36** | 0.30* | -0.15 |
拟杆菌门Bacteroidetes | 0.49** | -0.04 | 0.11 | 0.30* | 0.01 | -0.12 | -0.05 | 0.10 | 0.03 | 0.19 |
放线菌门Actinobacteria | -0.43** | 0.24 | -0.00 | -0.54** | -0.03 | 0.18 | 0.09 | -0.22 | 0.25* | -0.06 |
Patescibacteria | 0.25 | -0.13 | -0.03 | 0.32* | 0.23 | -0.02 | -0.02 | 0.00 | -0.10 | 0.10 |
厚壁菌门Firmicutes | -0.16 | 0.03 | 0.02 | -0.13 | 0.24 | 0.04 | -0.04 | 0.08 | 0.04 | -0.32* |
芽单胞菌门Gemmatimonadetes | -0.41** | 0.43** | -0.14 | -0.56** | -0.06 | 0.20 | 0.10 | -0.30* | 0.43** | -0.10 |
绿弯菌门Chloroflexi | -0.14 | 0.17 | 0.30* | -0.20 | -0.08 | 0.14 | -0.07 | -0.19 | 0.14 | 0.03 |
1 | Wang W X, Li X W, Huang W G, et al. Correlations between the composition and diversity of bacterial communities and ecological factors in the rhizosphere of Ammopiptanthus mongolicus. Acta Ecologica Sinica, 2020, 40(23): 8660-8671. |
王文晓, 李小伟, 黄文广, 等. 蒙古沙冬青根际土壤细菌群落组成及多样性与生态因子相关性研究. 生态学报, 2020, 40(23): 8660-8671. | |
2 | Wilson G W, Hickman K R, Williamson M M. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses. Mycorrhiza, 2012, 22(5): 327-336. |
3 | Khajeeyan R, Salehi A, Dehnavi M M, et al. Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes. Agricultural Water Management, 2019, 225: 105768. |
4 | Na X F, Xu T T, Li M, et al. Variations of bacterial community diversity within the rhizosphere of three phylogenetically related perennial shrub plant species across environmental gradients. Frontiers in Microbiology, 2018, 9: 709. |
5 | Ding X J, Jing R Y, Huang Y L, et al. Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing. Scientia Silvae Sinicae, 2018, 54(1): 81-89. |
丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 2018, 54(1): 81-89. | |
6 | Tripathi B M, Moroenyane I, Sherman C, et al. Trends in taxonomic and functional composition of soil microbiome along a precipitation gradient in Israel. Microbial Ecology, 2017, 74(1): 168-176. |
7 | Cornelissen J H, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51: 335-380. |
8 | Milla R, Reich P B. The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1622): 2109-2114. |
9 | Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 2002, 90(3): 534-543. |
10 | Niklas K J, Owens T, Reich P B, et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8(6): 636-642. |
11 | Lei L J, Kong D L, Li X M, et al. Plant functional traits, functional diversity, and ecosystem functioning: Current knowledge and perspectives. Biodiversity Science, 2016, 24(8): 922-931. |
雷羚洁, 孔德良, 李晓明, 等. 植物功能性状、功能多样性与生态系统功能:进展与展望. 生物多样性, 2016, 24(8): 922-931. | |
12 | Li S J, Wang H, Gou W, et al. Relationship between leaf functional traits of mixed desert plants and microbial diversity in rhizosphere. Ecology and Environmental Sciences, 2020, 29(9): 1713-1722. |
李善家, 王辉, 苟伟, 等. 混生荒漠植物叶片功能性状与其根际微生物多样性的关系. 生态环境学报, 2020, 29(9): 1713-1722. | |
13 | Delgado-Baquerizo M, Fry E L, Eldridge D J, et al. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist, 2018, 219(2): 574-587. |
14 | Wang J M, Wang Y, He N P, et al. Plant functional traits regulate soil bacterial diversity across temperate deserts. Science of the Total Environment, 2020, 715: 136976. |
15 | Leff J W, Bardgett R D, Wilkinson A, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. The ISME Journal, 2018, 12: 1794-1805. |
16 | Li Q X, Wang Y S, Zhu Y J, et al. Effects of soil improvement of Caragana intermedia plantations in alpine sandy land on Tibet Plateau. Acta Ecologica Sinica, 2014, 34(2): 123-128. |
17 | Wang H C, Wang C G, He X, et al. The response of Caragana stenophylla pojark leaf anatomical structure to desert grassland deterioration gradient under the drought stress. Ecology and Environmental Sciences, 2016, 25(5): 744-751. |
王海超, 王春光, 贺晓, 等. 狭叶锦鸡儿叶片解剖结构对干旱胁迫下荒漠草原退化梯度的响应. 生态环境学报, 2016, 25(5): 744-751. | |
18 | Yang J Y, Yang J, Yang M B, et al. Genetic diversity of Caragana species of the Ordos Plateau in China. Plant Systematics and Evolution, 2012, 298(4): 801-809. |
19 | Na X F, Xu T T, Li M, et al. Bacterial diversity in the rhizosphere of two phylogenetically closely related plant species across environmental gradients. Journal of Soils and Sediments, 2017, 17(1): 122-132. |
20 | Zhou Z N. Response of leaf traits of two closely related Caragana species to environmental changes. Yinchuan: Ningxia University, 2020. |
周兆娜. 锦鸡儿属2个近缘种叶片性状对环境的响应. 银川: 宁夏大学, 2020. | |
21 | Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(D1): D590-D596. |
22 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 2014, 111(14): 5266-5270. |
23 | Zhang J Z, Chen X R, Yang C D, et al. A study on the diversity of soil cultured fungi in the alpine grassland of Eastern Qilian Mountains. Acta Prataculturae Sinica, 2010, 19(2): 124-132. |
张俊忠, 陈秀蓉, 杨成德, 等. 东祁连山高寒草地土壤可培养真菌多样性分析. 草业学报, 2010, 19(2): 124-132. | |
24 | Wang P, Sheng L X, Yan H, et al. Plant functional traits influence soil carbon sequestration in wetland ecosystem. Acta Ecologica Sinica, 2010, 30(24): 6990-7000. |
王平, 盛连喜, 燕红, 等. 植物功能性状与湿地生态系统土壤碳汇功能. 生态学报, 2010, 30(24): 6990-7000. | |
25 | Ji Z J, Quan X K, Wang C K. Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes. Acta Ecologica Sinica, 2013, 33(21): 6967-6974. |
季子敬, 全先奎, 王传宽. 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性. 生态学报, 2013, 33(21): 6967-6974. | |
26 | Millard P, Singh B K. Does grassland vegetation drive soil microbial diversity? Nutrient Cycling Agroecosystems, 2010, 88(2):147-158. |
27 | Wen C, Yang Z J, Yang L, et al. Ecological stoichiometry characteristics of plants and soil under different vegetation in the semi-arid loess small watershed. Acta Ecologica Sinica, 2021, 41(5): 1824-1834. |
温晨, 杨智姣, 杨磊, 等. 半干旱黄土小流域不同植被类型植物与土壤生态化学计量特征. 生态学报, 2021, 41(5): 1824-1834. | |
28 | Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3): 298-310. | |
29 | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827. |
30 | Liu F C, Xing S J, Ma H L, et al. Effects of inoculating plant growth-promoting rhizobacteria on the biological characteristics of walnut (Juglans regia) rhizosphere soil under drought condition. Chinese Journal of Applied Ecology, 2014, 25(5): 1475-1482. |
刘方春, 邢尚军, 马海林, 等. 干旱生境中接种根际促生细菌对核桃根际土壤生物学特征的影响. 应用生态学报, 2014, 25(5): 1475-1482. | |
31 | Liu F C, Xing S J, Ma H L, et al. Effects of continuous drought on soil bacteria populations and community diversity in sweet cherry rhizosphere. Acta Ecologica Sinica, 2014, 34(3): 642-649. |
刘方春, 邢尚军, 马海林, 等. 持续干旱对樱桃根际土壤细菌数量及结构多样性影响. 生态学报, 2014, 34(3): 642-649. | |
32 | Henry A, Doucette W J, Norton J M, et al. Changes in crested wheat grass root exudation caused by flood, drought, and nutrient stress. Journal of Environmental Quality, 2007, 36(3): 904-912. |
33 | Zhang C, Liu G B, Xue S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology and Biochemistry, 2016, 97: 40-49. |
34 | Li Y, Lee C G, Watanabe T, et al. Identification of microbial communities that assimilate substrate from root cap cells in an aerobic soil using a DNA-SIP approach. Soil Biology and Biochemistry, 2011, 43: 1928-1935. |
35 | Ma F, Na X F, Xu T T. Drought responses of three closely related Caragana species: Implication for their vicarious distribution. Ecology and Evolution, 2016, 6(9): 2763-2773. |
36 | Li S F, Huang X B, Lang X D, et al. Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha river valley of Southwestern China. Forest Ecology and Management, 2020, 472: 118281. |
37 | Piao Z, Yang L Z, Zhao L P, et al. Actinobacterial community structure in soils receiving long-term organic and inorganic amendments. Applied and Environmental Microbiology, 2008, 74(2): 526-530. |
38 | Zhang K, Kang J M, Long R C, et al. Screening of highly-effective rhizobial strains in alfalfa (Medicago sativa L. cv. ‘Zhongmu No. 3’) under salinity and alkalinity stresses. Chinese Journal of Grassland, 2018, 40(1): 9-16. |
张昆, 康俊梅, 龙瑞才, 等. 盐碱胁迫条件下中苜3号紫花苜蓿高效共生根瘤菌筛选. 中国草地学报, 2018, 40(1): 9-16. | |
39 | Tajini F, Trabelsi M, Drevon J J, et al. Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 2012, 19(2): 157-163. |
40 | Li M, Li Y, Chen W F, et al. Genetic diversity, community structure and distribution of rhizobia in the root nodules of Caragana spp. from arid and semi-arid alkaline deserts, in the North of China. Systematic and Applied Microbiology, 2012, 35(4):239-245. |
[1] | 吴慧丽, 田薇, 纪燕玲, 娄来清, 蔡庆生. 促进镉吸收积累的植物根际促生菌的筛选及其对一年生黑麦草的影响[J]. 草业学报, 2021, 30(7): 53-61. |
[2] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[3] | 赵文, 尹亚丽, 李世雄, 刘燕, 刘晶晶, 董怡玲, 苏世锋, 吉凌鹤. 祁连山不同类型草地土壤细菌群落特征研究[J]. 草业学报, 2021, 30(12): 161-171. |
[4] | 胡鸿姣, 刘新平, 张铜会, 何玉惠, 王明明, 张腊梅, 孙姗姗, 程莉. 小叶锦鸡儿饲用营养价值及青贮加工[J]. 草业学报, 2021, 30(11): 181-190. |
[5] | 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[6] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[7] | 贾红梅, 方千, 张秫华, 严铸云, 柳敏. AM真菌对丹参生长及根际土壤酶活性的影响[J]. 草业学报, 2020, 29(6): 83-92. |
[8] | 李志龙, 罗超越, 邱慧珍, 付笑, 邓德雷, 张春红, 沈其荣. 连续施氮对马铃薯根际细菌群落结构及反硝化作用的影响[J]. 草业学报, 2020, 29(6): 105-116. |
[9] | 谢开云, 王玉祥, 万江春, 张树振, 隋晓青, 赵云, 张博. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素[J]. 草业学报, 2020, 29(3): 157-170. |
[10] | 马源, 张德罡. 草地根际过程对养分循环调控机制研究进展[J]. 草业学报, 2020, 29(11): 172-182. |
[11] | 刘红梅, 杨殿林, 张海芳, 赵建宁, 王慧, 张乃琴. 氮添加对贝加尔针茅草原土壤细菌群落结构的影响[J]. 草业学报, 2019, 28(9): 23-32. |
[12] | 李争艳, 徐智明, 师尚礼, 贺春贵. 江淮地区不同轮茬作物对苜蓿产量及根际土壤质量的影响[J]. 草业学报, 2019, 28(8): 28-39. |
[13] | 刘雪儿, 马金凤, 杨成德, 李统华. 青海高寒草地针茅根际土壤细菌拮抗功能评价及鉴定[J]. 草业学报, 2019, 28(8): 161-169. |
[14] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[15] | 张文文, 刘秉儒, 牛宋芳. 引黄灌区不同种植年限紫花苜蓿土壤养分与细菌群落特征研究[J]. 草业学报, 2019, 28(5): 46-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||