[1] Díaz S, Cabido M, Casanoves G.Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 1998, 9(1): 113-122. [2] Che Y D, Liu M X, Li L R, et al. Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny. Chinese Journal of Plant Ecology, 2017, 41(11): 1157-1167. 车应弟, 刘旻霞, 李俐蓉, 等. 基于功能性状及系统发育的亚高寒草甸群落构建. 植物生态学报, 2017, 41(11): 1157-1167. [3] Xu Y D, Dong S K, Li S, et al. Research progress on ecological filtering mechanisms for plant community assembly. Acta Ecologica Sinica, 2019, 39(7): 2267-2281. 许驭丹, 董世魁, 李帅, 等. 植物群落构建的生态过滤机制研究进展. 生态学报, 2019, 39(7): 2267-2281. [4] Liu X J, Ma K P.Plant functional traits-concepts, applications and future directions. Scientia Sinica Vitae, 2015, 45(4): 325-339. 刘晓娟, 马克平. 植物功能性状研究进展. 中国科学: 生命科学, 2015, 45(4): 325-339. [5] Shi Y, Wen Z M, Gong S H, et al. Trait variations along a climatic gradient in hilly area of Loess Plateau. Research of Soil and Water Conservation, 2012, 19(1): 107-116. 施宇, 温仲明, 龚时慧, 等. 黄土丘陵区植物功能性状沿气候梯度的变化规律. 水土保持研究, 2012, 19(1): 107-116. [6] Gong S H, Wen Z M, Shi Y.The response of community-weighted mean plant functional traits to environmental gradients in Yanhe river catchment. Acta Ecologica Sinica, 2011, 31(20): 6088-6097. 龚时慧, 温仲明, 施宇. 延河流域植物群落功能性状对环境梯度的响应. 生态学报, 2011, 31(20): 6088-6097. [7] Venn S E, Green K, Pickering C M, et al. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snow patches. Plant Ecology, 2011, 212(9): 1491-1499. [8] Liu M X, Ma J Z.Feature variations of plant functional traits and environmental factor in south- and north-facing slope. Research of Soil and Water Conservation, 2013, 30(1): 102-106. 刘旻霞, 马建祖. 阴阳坡植物功能性状与环境因子的变化特征. 水土保持研究, 2013, 30(1): 102-106. [9] Jager M M, Richardson S J, Bellingham P J, et al. Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 2015, 103(2): 374-385. [10] Hu Y S, Yao X Y, Liu Y H.The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains. Acta Ecologica Sinica, 2014, 34(20): 5915-5924. 胡耀升, 么旭阳, 刘艳红. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系. 生态学报, 2014, 34(20): 5915-5924. [11] Xu M S.Plant functional traits’ spatial variability and its scales dependent correlations with environment and biotic competitions in evergreen broad-leaved forests. Shanghai: East China Normal University, 2016. 许洺山. 常绿阔叶林植物功能性状的空间变异及其与环境、生物竞争的尺度关联性. 上海: 华东师范大学, 2016. [12] Cheng J Y.Plant community types and functional diversity in the eastern islands of China. Shanghai: East China Normal University, 2017. 程浚洋. 中国东部海岛植物群落类型与功能多样性. 上海: 华东师范大学, 2017. [13] Liu M X, Ma J Z.Responses of plant functional traits and soil factors to slope aspect in alpine meadow of South Gansu, Northwest China. Chinese Journal of Applied Ecology, 2012, 23(12): 3295-3300. 刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应. 应用生态学报, 2012, 23(12): 3295-3300. [14] Yang S S, Wen Z M, Miao L P, et al. Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau, China. Chinese Journal of Applied Ecology, 2014, 25(12): 3413-3419. 杨士梭, 温仲明, 苗连朋, 等. 黄土丘陵区植物功能性状对微地形变化的响应. 应用生态学报, 2014, 25(12): 3413-3419. [15] Li D, Kang S R L, Zhao M Y, et al. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Inner Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 991-1002. 李丹, 康萨如拉, 赵梦颖, 等. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系. 植物生态学报, 2016, 40(10): 991-1002. [16] Wu Z Y, Zhu Y C.Yunnan vegetation. Beijing: Science Press, 1987. 吴征镒, 朱彦丞. 云南植被. 北京: 科学出版社, 1987. [17] Li R N, Du F, Ma M, et al. Study on distribution characteristics of national key protected wild plants in northwest Yunnan. Journal of West China Forestry Science, 2012, 41(3): 53-59. 李瑞年, 杜凡, 马猛, 等. 滇西北地区国家重点保护野生植物的分布特征研究. 西部林业科学, 2012, 41(3): 53-59. [18] Zheng Z X, Sun Z H, Zhang Z M, et al. Comparison of leaf, height and seed functional traits of species in dry-hot valleys. Acta Ecologica Sinica, 2011, 31(4): 982-988. 郑志兴, 孙振华, 张志明, 等. 干热河谷植物叶片, 树高和种子功能性状比较. 生态学报, 2011, 31(4): 982-988. [19] Sheng Z L.Plant community functional diversity along degradation gradients in an alpine meadow. Kunming: Yunnan University, 2015. 盛芝露. 退化梯度上高山草甸植物群落功能特征多样性研究. 昆明: 云南大学, 2015. [20] He S Q, Li W, Cheng X P, et al. The effect of trampling disturbance on functional traits, species diversity, and functional diversity of alpine meadows in Bitahai Nature Reserve. Acta Ecologica Sinica, 2019, 39(6): 2063-2070. 何淑嫱, 李伟, 程希平, 等. 践踏干扰对碧塔海高寒草甸植被茎叶性状、物种多样性和功能多样性的影响. 生态学报, 2019, 39(6): 2063-2070. [21] Wang Z G, Wu J, Wang Z Y, et al. Statistic model for short-term climate prediction in Diqing district. Journal of Chengdu University of Information Technology, 2006, 21(5): 726-730. 王仔刚, 武军, 王自英, 等. 云南省迪庆州短期气候统计预测模式研究. 成都信息工程学院学报, 2006, 21(5): 726-730. [22] Huang X X, Zhang Y, He K J, et al. Tolerance of alpine meadows to human trampling. Acta Prataculturae Sinica, 2014, 23(2): 333-339. 黄晓霞, 张勇, 和克俭, 等. 高寒草甸对旅游踩踏的抗干扰响应能力. 草业学报, 2014, 23(2): 333-339. [23] Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Boman, 2003, 51(4): 335-380. [24] Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Boman, 2013, 61(3): 167-234. [25] Díaz S, Kattge J, Cornelissen J H C, et al. The global spectrum of plant form and function. Nature, 2016, 529: 167-171. [26] Meng T T, Ni J, Wang G H.Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology, 2007, 31(1): 150-165. 孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报, 2007, 31(1): 150-165. [27] Zhang X L, Dong S K, Guo X D, et al. Comparison of different sampling techniques for alpine grassland plant diversity on Qinghai-Tibet Plateau. Chinese Journal of Ecology, 2015, 34(12): 3568-3574. 张晓蕾, 董世魁, 郭贤达, 等. 青藏高原高寒草地植物多样性调查方法的比较. 生态学杂志, 2015, 34(12): 3568-3574. [28] Qiao S Y.Experimental instruction of soil physical and chemical properties. Wuhan: China University of Geosciences Press, 2012. 乔胜英. 土壤理化性质实验指导书. 武汉: 中国地质大学出版社, 2012. [29] Gamier E, Cortez J, Bills G, et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 2004, 85(9): 2630-2637. [30] Borcard D, Gillet F, Legendre P.Numerical ecology with R. New York: Springer, 2011. [31] Dray S, Choler P, Dolédec S, et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology, 2014, 95(1): 14-21. [32] Dray S, Legendre P.Testing the species traits-environment relationships: The fourth-corner problem revisited. Ecology, 2008, 89(12): 3400-3412. [33] Ter Braak C J, Cormont A, Dray S. Improved testing of species traits-environment relationships in the fourth-corner problem. Ecology, 2012, 93(7): 1525-1526. [34] Venn S E, Pickering C M, Butler S A, et al. Using a model based fourth-corner analysis to explain vegetation change following extraordinary fire disturbance. Oecologia, 2016, 182(3): 855-863. [35] Zhou X M.Kobresia meadow of China. Beijng: Science Press, 2001. 周兴民. 中国嵩草草甸. 北京: 科学出版社, 2001. [36] Moretto A S, Distel R A, Didoné N G.Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology, 2001, 18(1): 31-37. [37] Luo Y Y, Zhang Y, Zhang J H, et al. Soil stoichiometry characteristics of alpine meadow at its different degradation stages. Chinese Journal of Ecology, 2012, 31(2): 254-260. 罗亚勇, 张宇, 张静辉, 等. 不同退化阶段高寒草甸土壤化学计量特征. 生态学杂志, 2012, 31(2): 254-260. [38] Qing Y, Sun F D, Li Y, et al. Analysis of soil carbon, nitrogen and phosphorus in degraded alpine wetland, Zoige, Southwest China. Acta Prataculturae Sinica, 2015, 24(3): 38-47. 青烨, 孙飞达, 李勇, 等. 若尔盖高寒退化湿地土壤碳氮磷比及相关性分析. 草业学报, 2015, 24(3): 38-47. [39] Wu J G, Lü J J.Response mechanisms of soil carbon and nitrogen decomposition to temperature change. Chinese Journal of Ecology, 2008, 27(9): 1601-1611. 吴建国, 吕佳佳. 土壤有机碳和氮分解对温度变化的响应机制. 生态学杂志, 2008, 27(9): 1601-1611. [40] Zhao Y, Chen W, Li C M, et al. Content of soil organic matter and its relationships with main nutrients on degraded alpine meadow in Eastern Qilian Mountains. Pratacultural Science, 2009, 26(5): 20-25. 赵云, 陈伟, 李春鸣, 等. 东祁连山不同退化程度高寒草甸土壤有机质含量及其与主要养分的关系. 草业科学, 2009, 26(5): 20-25. [41] Liu X D, Yin G L, Wu J, et al. Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2015, 24(10): 15-24. 刘晓东, 尹国丽, 武均, 等. 青藏高原东部高寒草甸草地土壤物理性状对氮元素添加的响应. 草业学报, 2015, 24(10): 15-24. [42] Guo C J, Sun J G, Su F L, et al. Effects of soil bulk density on soil nutrient loss from meadow soil slope. Journal of Soil and Water Conservation, 2012, 26(6): 27-30. 郭成久, 孙景刚, 苏芳莉, 等. 土壤容重对草甸土坡面养分流失特征的影响. 水土保持, 2012, 26(6): 27-30. [43] Zhang J S, Tao S, Cao J.Spatial distribution of molecular size of water soluble organic matter and fulvic acid in soils from eastern China. Geographical Research, 2001, 20(1): 76-82. 张甲申, 陶澍, 曹军. 土壤水溶性有机物与富里酸分子量分布的空间结构特征. 地理研究, 2001, 20(1): 76-82. [44] Jiang Y, Zhang Y P, Yang Y G, et al. Impacts of grazing on the system coupling between vegetation and soil in the alpine and subalpine meadows of Wutai mountain. Acta Ecologica Sinica, 2010, 30(4): 837-846. 江源, 章异平, 杨艳刚, 等. 放牧对五台山高山、亚高山草甸植被-土壤系统耦合的影响. 生态学报, 2010, 30(4): 837-846. [45] Li Z, Wen Y L, Zhang Y, et al. Study on soil moisture content, pH and electrical conductivity characteristics at different stages of degraded meadow in Zoige alpine basin. Ecology and Environmental Sciences, 2016, 25(5): 752-759. 李铸, 文勇立, 张云, 等. 若尔盖盆地不同退化阶段草甸土壤含水率、pH及电导率的变化. 生态环境学报, 2016, 25(5): 752-759. [46] Yao B H, Wang C, Zhang Q, et al. Dynamic characteristics of soil physicochemical properties and microbial quantity during the degradation of Gannan alpine meadow. Journal of Soil and Water Conservation, 2019, 33(3): 138-145. 姚宝辉, 王缠, 张倩, 等. 甘南高寒草甸退化过程中土壤理化性质和微生物数量动态变化. 水土保持学报, 2019, 33(3): 138-145. [47] Yang Y, Sun H.Advances in the functional ecology of alpine and arctic plants. Acta Botanica Yunnanica, 2006, 28(1): 43-53. 杨扬, 孙航. 高山和极地植物功能生态学研究进展. 云南植物研究, 2006, 28(1): 43-53. [48] Geng Y, Wang L, Jin D, et al. Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia, 2014, 175(2): 445-455. [49] Guo M L, Yao B Q, Shi G X, et al. Phylogenetic relationships of leaf carbon content and plasticity in alpine meadow plants. Chinese Journal of Ecology, 2018, 37(6): 1841-1848. 郭美玲, 姚步青, 石国玺, 等. 高寒草甸植物叶片碳含量及其可塑性与系统发育的关系. 生态学杂志, 2018, 37(6): 1841-1848. [50] Hou Y, Liu M X, Sun H R.Response of plant leaf traits to microhabitat change in a subalpine meadow on the eastern edge of Qinghai-Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2017, 28(1): 71-79. 侯媛, 刘旻霞, 孙辉荣. 青藏高原东缘亚高寒草甸植物叶性状对微生境变化的响应. 应用生态学报, 2017, 28(1): 71-79. [51] Shi G X, Jiang S J, Luo J J, et al. Relationships between plant phylogeny and arbuscular mycorrhizal fungal colonization in an alpine meadow ecosystem. Acta Ecologica Sinica, 2017, 37(11): 3628-3635. 石国玺, 蒋胜竞, 罗佳佳, 等. 高寒草甸植物系统发育与AM真菌侵染的关系. 生态学报, 2017, 37(11): 3628-3635. [52] Quan G M, Xie J F, Zhang J E, et al. Effects of nitrogen and phosphorus nutrients on the nutritive organ phenotypic plasticity of invasive Chromolaena odorata. Chinese Journal of Ecology, 2014, 33(10): 2625-2632. 全国明, 谢俊芳, 章家恩, 等. 氮、磷养分对飞机草营养器官表型可塑性的影响. 生态学杂志, 2014, 33(10): 2625-2632. [53] Ellis S, Howe M T, Goulding K W T, et al. Carbon and nitrogen dynamics in a grassland soil with varying pH: Effect of pH on the denitrification potential and dynamics of the reduction enzymes. Soil Biology and Biochemistry, 1998, 30(3): 359-367. [54] Hall J M, Paterson E, Killham K, et al. The effect of elevated CO2 concentration and soil pH on the relationship between plant growth and rhizosphere denitrification potential. Global Change Biology, 1998, 4(2): 209-216. [55] Reth S, Rrichstein M, Falge E.The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux: A modified model. Plant and Soil, 2005, 268(1): 21-33. [56] Mccarthy M C, Enquist B J.Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 2007, 21(4): 713-720. [57] Liu M X, Liu Y Y, Chen S W, et al. Plant photosynthetic characteristics along slope gradients in an alpine meadow region on the eastern edge of Qinghai-Tibetan Plateau. Soil and Crop, 2015, 4(3): 104-112. 刘旻霞, 刘洋洋, 陈世伟, 等. 青藏高原东缘高寒草甸坡向梯度上植物光合生理特征研究. 土壤与作物, 2015, 4(3): 104-112. [58] Li Y, Lin L, Zhu W Y, et al. Responses of leaf traits to nitrogen and phosphorus additions across common species in an alpine grassland on the Qinghai-Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(3): 535-544. 李颖, 林笠, 朱文琰, 等. 青藏高原高寒草地常见植物叶属性对氮、磷添加的响应. 北京大学学报(自然科学版), 2017, 53(3): 535-544. |