草业学报 ›› 2022, Vol. 31 ›› Issue (7): 28-37.DOI: 10.11686/cyxb2021185
收稿日期:
2021-05-07
修回日期:
2021-09-23
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
韦杰
作者简介:
E-mail: wei_jie@mails.ucas.ac.cn基金资助:
Feng-ling GAN1,2(), Jie WEI1,2(), Sha-sha LI2
Received:
2021-05-07
Revised:
2021-09-23
Online:
2022-07-20
Published:
2022-06-01
Contact:
Jie WEI
摘要:
为进一步探索紫色土埂坎草本根-土界面摩阻特性与土壤含水率的关系,以紫色土埂坎常见稗草、马唐和牛筋草3种草本根系为研究对象,设置不同土壤含水率(5%、10%、15%、20%和25%),通过直剪和拉拔摩阻试验测定草本根-土复合体的摩阻特性指标(黏聚力、摩擦系数、最大抗拔力和抗拔强度),分析了土壤含水率对不同草本根-土界面摩阻特性的影响。结果表明:1)当含水率为15%和20% 时,根-土界面黏聚力达到较小值,而摩擦系数、最大抗拔力和抗拔强度达到较大值。2)3种草本根-土界面拉拔摩阻特性差异显著(P<0.01),牛筋草根-土界面平均最大抗拔力和抗拔强度分别是马唐的1.18和1.30倍,是稗草的1.14和1.10倍。3) 草本根-土界面间抗剪强度和垂直荷载的关系服从莫尔-库伦准则。当含水率为20%和25%时,根-土界面间抗拔力达到较大值。4)在相同垂直荷载和土壤含水率条件下,牛筋草根-土界面抗剪强度显著高于马唐和稗草(P<0.05)。由此可知,牛筋草根系能增强紫色土埂坎稳定性,其根系对埂坎的加固作用约在土壤含水率为15%时效果最佳。研究结果可为三峡库区紫色土埂坎固埂护坡草本植物的筛选提供参考。
甘凤玲, 韦杰, 李沙沙. 紫色土埂坎典型草本根系摩阻特性对土壤含水率的响应[J]. 草业学报, 2022, 31(7): 28-37.
Feng-ling GAN, Jie WEI, Sha-sha LI. Response of root-soil friction characteristics of three common grasses to soil water content in purple soil bunds[J]. Acta Prataculturae Sinica, 2022, 31(7): 28-37.
土壤质量含水率 Soil mass moisture content (%) | 黏粒Clay (%) | 粉粒Silt (%) | 砂粒Sand (%) | pH | 有机质 Organic matter (%) |
---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | >0.05~2 mm | |||
5.37±0.11 | 10.77±0.03 | 69.47±0.12 | 19.76±0.14 | 6.14±0.02 | 1.49±0.11 |
表1 埂坎原状土壤理化性质
Table 1 Soil chemical and physical properties of undisturbed soil bunds
土壤质量含水率 Soil mass moisture content (%) | 黏粒Clay (%) | 粉粒Silt (%) | 砂粒Sand (%) | pH | 有机质 Organic matter (%) |
---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | >0.05~2 mm | |||
5.37±0.11 | 10.77±0.03 | 69.47±0.12 | 19.76±0.14 | 6.14±0.02 | 1.49±0.11 |
土壤含水率 Soil water content | 根-土界面 Root-soil interface | 黏聚力 Cohesive force (kPa) | 摩擦系数 Friction coefficient | 最大抗拔力 Maximum pulling force (N) | 抗拔强度 Pull strength (MPa) |
---|---|---|---|---|---|
5% | 马唐 D. sanguinalis | 1.00±0.27b | 0.87±0.08a | 1.03±0.26b | 138.76±43.39c |
稗草 E. crusgalli | 11.71±0.20a | 0.76±0.09b | 1.36±0.35b | 165.35±41.69b | |
牛筋草 E. indica | 0.33±0.04c | 1.13±0.11a | 3.23±0.95a | 244.82±75.45a | |
10% | 马唐 D. sanguinalis | 23.11±0.45a | 0.88±0.28a | 1.33±0.19b | 200.66±36.90b |
稗草 E. crusgalli | 19.31±0.37b | 0.51±0.17b | 1.53±0.36b | 224.18±41.23a | |
牛筋草 E. indica | 1.83±0.03c | 1.23±0.41a | 2.20±0.69a | 220.82±53.79a | |
15% | 马唐 D. sanguinalis | 0.51±0.01b | 0.89±0.15a | 2.10±0.35b | 302.03±23.47b |
稗草 E. crusgalli | 1.83±0.32a | 0.96±0.13a | 1.86±0.32b | 326.76±48.68a | |
牛筋草 E. indica | 1.65±0.28a | 1.07±0.21a | 2.95±1.13a | 382.12±13.98a | |
20% | 马唐 D. sanguinalis | 10.12±1.89b | 0.58±0.14b | 2.73±0.97a | 319.91±37.62a |
稗草 E. crusgalli | 17.80±3.21a | 0.61±0.16b | 2.37±0.26b | 303.44±23.81a | |
牛筋草 E. indica | 1.12±0.20c | 1.09±0.21a | 2.40±0.21b | 332.25±39.21a | |
25% | 马唐 D. sanguinalis | 15.10±2.95a | 0.59±0.06a | 2.31±0.75a | 317.36±24.21a |
稗草 E. crusgalli | 16.65±1.75a | 0.38±0.04b | 1.47±0.09b | 217.65±10.05b | |
牛筋草 E. indica | 1.16±1.23b | 0.62±0.08a | 1.40±0.13b | 228.06±15.60b |
表2 埂坎3种草本根-土界面摩阻特性
Table 2 Root-soil interface friction characteristics of 3 typical herbs in soil bunds
土壤含水率 Soil water content | 根-土界面 Root-soil interface | 黏聚力 Cohesive force (kPa) | 摩擦系数 Friction coefficient | 最大抗拔力 Maximum pulling force (N) | 抗拔强度 Pull strength (MPa) |
---|---|---|---|---|---|
5% | 马唐 D. sanguinalis | 1.00±0.27b | 0.87±0.08a | 1.03±0.26b | 138.76±43.39c |
稗草 E. crusgalli | 11.71±0.20a | 0.76±0.09b | 1.36±0.35b | 165.35±41.69b | |
牛筋草 E. indica | 0.33±0.04c | 1.13±0.11a | 3.23±0.95a | 244.82±75.45a | |
10% | 马唐 D. sanguinalis | 23.11±0.45a | 0.88±0.28a | 1.33±0.19b | 200.66±36.90b |
稗草 E. crusgalli | 19.31±0.37b | 0.51±0.17b | 1.53±0.36b | 224.18±41.23a | |
牛筋草 E. indica | 1.83±0.03c | 1.23±0.41a | 2.20±0.69a | 220.82±53.79a | |
15% | 马唐 D. sanguinalis | 0.51±0.01b | 0.89±0.15a | 2.10±0.35b | 302.03±23.47b |
稗草 E. crusgalli | 1.83±0.32a | 0.96±0.13a | 1.86±0.32b | 326.76±48.68a | |
牛筋草 E. indica | 1.65±0.28a | 1.07±0.21a | 2.95±1.13a | 382.12±13.98a | |
20% | 马唐 D. sanguinalis | 10.12±1.89b | 0.58±0.14b | 2.73±0.97a | 319.91±37.62a |
稗草 E. crusgalli | 17.80±3.21a | 0.61±0.16b | 2.37±0.26b | 303.44±23.81a | |
牛筋草 E. indica | 1.12±0.20c | 1.09±0.21a | 2.40±0.21b | 332.25±39.21a | |
25% | 马唐 D. sanguinalis | 15.10±2.95a | 0.59±0.06a | 2.31±0.75a | 317.36±24.21a |
稗草 E. crusgalli | 16.65±1.75a | 0.38±0.04b | 1.47±0.09b | 217.65±10.05b | |
牛筋草 E. indica | 1.16±1.23b | 0.62±0.08a | 1.40±0.13b | 228.06±15.60b |
根-土界面 Root-soil interface | 黏聚力 Cohesive force | 摩擦系数 Friction coefficient | ||
---|---|---|---|---|
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=-0.0058x2+0.4789x+4.3820 | 0.064 | y=-0.0009x2+0.0095x+0.8672 | 0.774 |
稗草E. crusgalli | y=0.0456x2-1.1991x+18.9100 | 0.125 | y=-0.0021x2+0.0491x+0.4748 | 0.417 |
牛筋草E. indica | y=-0.0094x2+0.3000x-0.7110 | 0.629 | y=-0.0028x2+0.0594x+0.8930 | 0.901 |
根-土界面 Root-soil interface | 最大抗拔力 Maximum pulling force | 抗拔强度 Pull strength | ||
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=0.378x0.605 | 0.893 | y=-0.6068x2+27.7340x+6.6117 | 0.968 |
稗草E. crusgalli | y=0.189x2-0.006x+0.423 | 0.598 | y=-1.0387x2+31.7280x+83.5000 | 0.491 |
牛筋草E. indica | y=0.037x2-0.004x+2.854 | 0.640 | y=-1.2090x2+40.9380x-26.2970 | 0.876 |
表3 埂坎3种草本根-土界面摩阻特性指标与土壤含水率关系
Table 3 Relationships between root-soil interface friction characteristics of 3 kinds of herbs and soil water content
根-土界面 Root-soil interface | 黏聚力 Cohesive force | 摩擦系数 Friction coefficient | ||
---|---|---|---|---|
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=-0.0058x2+0.4789x+4.3820 | 0.064 | y=-0.0009x2+0.0095x+0.8672 | 0.774 |
稗草E. crusgalli | y=0.0456x2-1.1991x+18.9100 | 0.125 | y=-0.0021x2+0.0491x+0.4748 | 0.417 |
牛筋草E. indica | y=-0.0094x2+0.3000x-0.7110 | 0.629 | y=-0.0028x2+0.0594x+0.8930 | 0.901 |
根-土界面 Root-soil interface | 最大抗拔力 Maximum pulling force | 抗拔强度 Pull strength | ||
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=0.378x0.605 | 0.893 | y=-0.6068x2+27.7340x+6.6117 | 0.968 |
稗草E. crusgalli | y=0.189x2-0.006x+0.423 | 0.598 | y=-1.0387x2+31.7280x+83.5000 | 0.491 |
牛筋草E. indica | y=0.037x2-0.004x+2.854 | 0.640 | y=-1.2090x2+40.9380x-26.2970 | 0.876 |
1 | Du X, Li S C,Peng Y X. Benefit study on the improved slope farmland by alley cropping and stone dike terrace.Subtropical Soil and Water Conservation,2012,24(3): 26-35. |
杜旭,李顺彩,彭业轩. 植物篱与石坎梯田改良坡耕地效益研究. 亚热带水土保持,2012,24(3): 26-35. | |
2 | Bao Y H,Cong P J,Feng W, et al. Comprehensive management system of soil and water loss in purple soil area of Southwestern China. Bulletin of Soil and Water Conservation,2018,38(3): 143-150. |
鲍玉海,丛佩娟,冯伟,等. 西南紫色土区水土流失综合治理技术体系. 水土保持通报,2018,38(3): 143-150. | |
3 | Li J J,Wei J,Li J L, et al. Experimental study of different layers infiltration of soil bunds on purple-soil sloping farmlands. Journal of Soil and Water Conservation,2017,31(4): 69-74. |
黎娟娟,韦杰,李进林,等. 紫色土坡耕地土质埂坎分层入渗试验研究. 水土保持学报,2017,31(4): 69-74. | |
4 | Li J L,Wei J,He X B. Stability analysis of different scale soil bunds on purple soil sloping farmlands. Science of Soil and Water Conservation,2018,16(5): 1-9. |
李进林,韦杰,贺秀斌. 紫色土坡耕地不同规格土坎稳定性分析. 中国水土保持科学,2018,16(5): 1-9. | |
5 | Amare T,Zegeye A D,Yitaferu B, et al. Combined effect of soil bund with biological soil and water conservation measures in the Northwestern Ethiopian highlands. Ecohydrology & Hydrobiology,2014,14(3): 192-199. |
6 | Jemberu W,Baartman J E M,Fleskens L, et al. Assessing the variation in bund structure dimensions and its impact on soil physical properties and hydrology in Koga catchment,highlands of Ethiopia. Catena,2017,157(10): 195-204. |
7 | Pallewattha M,Indraratna B,Heitor A, et al. Shear strength of a vegetated soil incorporating both root reinforcement and suction. Transportation Geotechnics,2019,18(3): 72-82. |
8 | Nomessi K K,André G T,Zanin K. Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecological Engineering,2016,86(1): 146-153. |
9 | Zhang C B,Chen L H,Jiang J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology,2014,206(2): 196-202. |
10 | Li G R,Hu X S,Mao X Q, et al. Numerical simulation of shrub roots for slope protection effects on loess area of Northeast Qinghai-Tibetan Plateau. Journal of Rock Mechanics and Engineering,2012,29(9): 1877-1884. |
李国荣,胡夏嵩,毛小青,等. 青藏高原东北部黄土区灌木根系护坡效应的数值模拟. 岩石力学与工程学报,2012,29(9): 1877-1884. | |
11 | Wang Y Z,Liu X F,Zhang Z K, et al. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil. Chinese Journal of Geotechnical Engineering,2015,37(8): 1405-1410. |
王元战,刘旭菲,张智凯,等. 含根量对原状与重塑草根加筋土强度影响的试验研究. 岩土工程学报,2015,37(8): 1405-1410. | |
12 | Ye C,Guo Z,Li Z, et al. The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China. Geomorphology,2017,285: 82-93. |
13 | Song W F,Chen L H,Liu X P. Experiment on characteristic of interface between root system and soil. Science of Soil and Water Conservation,2006,4(2): 62-65. |
宋维峰,陈丽华,刘秀萍. 根系与土体接触面相互作用特性试验. 中国水土保持科学,2006,4(2): 62-65. | |
14 | Xing H W,Liu J,Wang L H, et al. Friction characteristics of soil-soil interface and root-soil interface of Caragana intermedia and Salix psammophila. Tribology,2010,30(1): 87-91. |
邢会文,刘静,王林和,等. 柠条、沙柳根与土及土与土界面摩擦特性. 摩擦学学报,2010,30(1): 87-91. | |
15 | Tian J,Cao B,Ji J N, et al. Direct shear friction test and numerical simulation of soil-soil and root-soil interface of Hedysarum scoparium and Salix psammophila. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(13): 149-156. |
田佳,曹兵,及金楠,等. 花棒沙柳根与土及土与土界面直剪摩擦试验与数值模拟. 农业工程学报,2015,31(13): 149-156. | |
16 | Liu Y B,Hu X S,Yu D M, et al. Distribution characteristics of combined herb and shrub roots in loess area of Xining Basin and their effect on enhancing soil shear strength. Journal of Engineering Geology,2020,28(3): 471-481. |
刘亚斌,胡夏嵩,余冬梅,等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应. 工程地质学报,2020,28(3): 471-481. | |
17 | Du J H,Hu J,Li G F, et al. Friction effects of the interface of rubber tree roots-soil. Natural Science Journal of Hainan University,2019,37(1): 68-73. |
杜金辉,胡俊,李光范,等. 橡胶树根-土界面摩阻效应试验研究. 海南大学学报(自然科学版),2019,37(1): 68-73. | |
18 | Fan C C. A displacement-based model for estimating the shear resistance of root-permeated soils. Plant Soil,2012,355(1/2): 103-119. |
19 | Chen Y,He B H,Lian C X, et al. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica,2016,36(16): 5173-5181. |
谌芸,何丙辉,练彩霞,等. 三峡库区陡坡根-土复合体抗冲性能. 生态学报,2016,36(16): 5173-5181. | |
20 | Wei J,Shi B L,Li J L. Response of soil shear strength to soil water content in purple soil slope cropland bunds. Transactions of the Chinese Society of Agricultural Engineering,2016,32(20): 153-160. |
韦杰,史炳林,李进林. 紫色土坡耕地埂坎土壤抗剪性能对含水率的响应. 农业工程学报,2016,32(20): 153-160. | |
21 | Lin D G,Huang B S,Lin S H. 3-D numerical investigations into the shear strength of the soil-root system of Makino bamboo and its effect on slope stability. Ecological Engineering,2010,36(8): 992-1006. |
22 | Ministry of Water Resources of the People’s Republic of China. Standard for geotechnical testing, GB/T50123-2019. Beijing: China Planning Publishing House,2019. |
中华人民共和国水利部. 土工试验方法标准, GB/T50123-2019. 北京: 中国计划出版社,2019. | |
23 | Liu Y B,Yu D M,Fu J T, et al. Experimental study on root-soil friction mechanical mechanism of Caragana korshinskii Kom in loess area. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 198-205. |
刘亚斌,余冬梅,付江涛,等. 黄土区灌木柠条锦鸡儿根-土间摩擦力学机制试验研究. 农业工程学报,2017,33(10): 198-205. | |
24 | Wang R Z,Chen Y,Li T, et al. Root distribution characteristics of Vetiveria zizanioides and Digitaria sanguinalis and their effect on the anti-erodibility of purple soil in slope lands. Acta Prataculturae Sinica,2017,26(7): 45-54. |
王润泽,谌芸,李铁,等. 香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响. 草业学报,2017,26(7): 45-54. | |
25 | Huang Z,Wei B,Zhang L, et al. Surface crack development rules and shear strength of compacted expansive soil due to dry-wet cycles. Geotechnical and Geological Engineering,2019,37(4): 2647-2657. |
26 | Xing H W. Test studies on the surface friction characteristics of 4 kinds of plant roots. Hohhot: Inner Mongolia Agricultural University,2009. |
邢会文. 4 种植物根-土界面摩阻特性研究. 呼和浩特: 内蒙古农业大学,2009. | |
27 | Wei J,Shi B L,Li J L, et al. Shear strength of purple soil bunds under different soil water contents and dry densities. Catena,2018,166(3): 124-133. |
28 | Zheng L W,Liu X G,Yu X X, et al. Effects of root diameter of Pinus tabuliformis on friction characteristics for root-soil interface. Journal of Beijing Forestry University,2014,26(3): 90-94. |
郑力文,刘小光,余新晓,等. 油松根系直径对根-土界面摩擦性能的影响. 北京林业大学学报,2014,26(3): 90-94. | |
29 | Mao Z,Yang M,Bourrier F. Evaluation of root reinforcement models using numerical modeling approaches. Plant and Soil,2014,381(1/2): 249-270. |
[1] | 杨志新, 郑旭, 陈来宝, 于泳鑫, 张凤华, 李鲁华, 王家平. 干旱区盐碱地食叶草根系形态分布适应策略研究[J]. 草业学报, 2022, 31(7): 15-27. |
[2] | 撖冬荣, 姚拓, 李海云, 陈敏豪, 高亚敏, 李昌宁, 白洁, 苏明. 化肥减量配施微生物肥料对垂穗披碱草生长的影响[J]. 草业学报, 2022, 31(4): 53-61. |
[3] | 魏畅, 焦秋娟, 柳海涛, 张静静, 申凤敏, 姜瑛, 张雪海, 孙娈姿, 杨芳, 刘振. 镉暴露条件下玉米生长及根系构型分级特征研究[J]. 草业学报, 2022, 31(3): 101-113. |
[4] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[5] | 白婕, 臧真凤, 刘丛, 昝看卓, 龙明秀, 王可珍, 屈洋, 何树斌. 紫花苜蓿叶片和根系膜脂过氧化及C、N特征对水分和N添加的响应[J]. 草业学报, 2022, 31(2): 213-220. |
[6] | 邢强, 秦俊, 胡永红. 不同践踏强度对3种暖季型草坪草的影响[J]. 草业学报, 2022, 31(2): 52-61. |
[7] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
[8] | 汪雪, 刘晓静, 赵雅姣, 王静. 根系分隔方式下紫花苜蓿/燕麦间作氮素利用及种间互馈特征研究[J]. 草业学报, 2021, 30(8): 73-85. |
[9] | 臧真凤, 白婕, 刘丛, 昝看卓, 龙明秀, 何树斌. 紫花苜蓿形态和生理指标响应干旱胁迫的品种特异性[J]. 草业学报, 2021, 30(6): 73-81. |
[10] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[11] | 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀. 川西北高原3种禾本科牧草根系特征比较研究[J]. 草业学报, 2021, 30(3): 41-53. |
[12] | 杨林, 陈默, 李海燕, 杨允菲. 模拟降雨格局变化对虎尾草分株和根系特征的影响[J]. 草业学报, 2021, 30(1): 181-188. |
[13] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
[14] | 黄海霞, 杨琦琦, 崔鹏, 陆刚, 韩国君. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197-207. |
[15] | 张桐瑞, 李富翠, 李辉, 季双旋, 范志浩, 陈雨峰, 晁跃辉, 韩烈保. 草垫植入对混合草坪坪床稳定性和表观质量的影响[J]. 草业学报, 2020, 29(8): 27-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||