草业学报 ›› 2024, Vol. 33 ›› Issue (8): 190-198.DOI: 10.11686/cyxb2023367
• 综合评述 • 上一篇
收稿日期:
2023-09-27
修回日期:
2023-10-23
出版日期:
2024-08-20
发布日期:
2024-05-13
通讯作者:
潘颜霞
作者简介:
潘颜霞(1981-),女,山东寿光人,副研究员,博士。E-mail: panyanxia@lzb.ac.cn基金资助:
Yan-xia PAN1(), Hao XU2, Ya-feng ZHANG1, Hong-xia ZHANG1
Received:
2023-09-27
Revised:
2023-10-23
Online:
2024-08-20
Published:
2024-05-13
Contact:
Yan-xia PAN
摘要:
旱生植物的生存主要受制于水分条件,植物适应干旱的能力及对复水的响应策略决定其生长和分布情况。植物水力结构是植物在生长过程中形成的一种复杂的水力联通系统,反映了植物根部吸水-木质部输水-蒸腾作用散失水的土壤-植物-大气连续体(SPAC)循环过程中形成的水分供给策略,是决定植物抗旱能力的关键内在因素,也是植物-水分关系研究的重点。本研究综述了国内外学者在植物水力结构特征方面的最新进展,重点揭示了植物水力性状的协调与权衡机制,阐明了水力性状和经济性状的关系,总结了目前对植物供需水力学模型模拟和植物抗旱及复水恢复能力评价体系构建等方面的研究进展和不足,从水力结构学视角综合评价了植物抗旱适应机制研究中存在的问题,并展望了未来研究的重点,这些关键问题的解决将为干旱条件下植被恢复与重建提供理论依据和数据支撑。
潘颜霞, 许浩, 张亚峰, 张红霞. 旱生植物水力结构特征研究进展[J]. 草业学报, 2024, 33(8): 190-198.
Yan-xia PAN, Hao XU, Ya-feng ZHANG, Hong-xia ZHANG. Research progress on the hydraulic structure characteristics of xerophytes[J]. Acta Prataculturae Sinica, 2024, 33(8): 190-198.
1 | Pittermann J, Stuartb S A, Dawsonb T E, et al. Cenozoic climate change shape the evolutionary ecophysiology of the Cupressaceae conifers. PNAS, 2012, 109(24): 9647-9652. |
2 | Liu G H, Fu B J. Effects of global climate change on forest ecosystems. Journal of Natural Resources, 2001, 16(1): 71-78. |
刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响. 自然资源学报, 2001, 16(1): 71-78. | |
3 | Zhang Y, Kong Z C, Yan S, et al. Palaeo-biodiversity at the northern piedmont of Tianshan mountains in Xinjiang during the Middle to Late Holocene. Chinese Journal of Plant Ecology, 2005, 29(5): 836-844. |
张芸, 孔昭宸, 阎顺, 等. 新疆天山北坡地区中晚全新世生物多样性特化. 植物生态学报, 2005, 29(5): 836-844. | |
4 | Fang J Y, Lechowicz M J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 2006, 33(10): 1804-1819. |
5 | Meng T T, Ni J, Wang G H. Plant functional traits, environments and ecosystem functioning. Chinese Journal of Plant Ecology, 2007, 31(1): 150-165. |
孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报, 2007, 31(1): 150-165. | |
6 | Zou H, Gao G Y, Fu B J. The relationship between grassland ecosystem and soil water in arid and semiarid areas: A review. Acta Ecologica Sinica, 2016, 36(11): 3127-3136. |
邹慧, 高光耀, 傅伯杰. 干旱半干旱草地生态系统与土壤水分关系研究进展. 生态学报, 2016, 36(11): 3127-3136. | |
7 | Li J Y, Zhai H B. Hydraulic architecture and drought resistance of woody plants. Chinese Journal of Applied Ecology, 2000, 11(2): 301-305. |
李吉跃, 翟红波. 木本植物水力结构与抗旱性. 应用生态学报, 2000, 11(2): 301-305. | |
8 | Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany, 2004, 51(1): 45-56. |
9 | Gallé A, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytologist, 2007, 174(4): 799-810. |
10 | Maseda P H, Fernández R J. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. Journal of Experimental Botany, 2006, 57(15): 3963-3977. |
11 | Pittermann J. The evolution of water transport in plants: an integrated approach. Geobiology, 2010, 8: 112-139. |
12 | Anderegg W R L, Klein T, Bartlett M, et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS, 2016, 113(18): 5024-5029. |
13 | Liu S B, Slik J W F, Zhang J L, et al. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Global Ecology and Biogeography, 2011, 20(2): 241-250. |
14 | Fu P L, Jiang Y J, Wang A Y, et al. Stem hydraulic traits and leaf water-stress tolerance are coordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals Botany, 2012, 10(1): 189-199. |
15 | Zhang S B, Wen G J, Qu Y Y, et al. Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. Tree Physiology, 2022, 42(7): 1337-1349. |
16 | Johnson D M, Jean-Christophe D, Woodruff D R, et al. Contrasting hydraulic strategies in two tropical lianas and their host trees. American Journal of Botany, 2013, 100(2): 374-383. |
17 | Zhu S D, Liu H, Xu Q Y, et al. Are leaves more vulnerable to cavitation than branches? Functional Ecology, 2016, 30(11): 1740-1744. |
18 | Sartori K, Vasseur F, Violle C, et al. Leaf economics and slow-fast adaptation across the geographic range of Arabidopsis thaliana. Scientific Reports, 2019, 9(1): 10758. |
19 | Song H, Yu H Y, Chen Y T, et al. Leaf economics spectrum among different plant functional types in Beijing Botanical Garden, China. Chinese Journal of Applied Ecology, 2016, 27(6): 1861-1869. |
宋贺, 于鸿莹, 陈莹婷, 等. 北京植物园不同功能型植物叶经济谱. 应用生态学报, 2016, 27(6): 1861-1869. | |
20 | Xiong D L, Flexas J. Leaf economics spectrum in rice: leaf anatomical, biochemical and physiological trait trade-offs. Journal of Experimental Botany, 2018, 69(22): 5599-5609. |
21 | Hayes F J, Buchanan S W, Brent C, et al. Intraspecific variation in soy across the leaf economics spectrum. Annals of Botany, 2019, 123(1): 107-120. |
22 | Kramer-Walter K R, Bellingham P J, Millar T R, et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 2016, 104(5): 1299-1310. |
23 | Laughli D C, Lusk C H, Bellingham P J, et al. Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecology and Evolution, 2017, 7: 8936-8949. |
24 | Siefert A, Ravenscroft C, Weiser M D, et al. Functional beta-diversity patterns reveal deterministic community assembly processes in eastern north American trees. Global Ecology Biogeography, 2013, 22(6): 682-691. |
25 | Suter M, Edwards P J. Convergent succession of plant communities is linked to species’ functional traits. Perspectives in Plant Ecology Evolution and Systematics, 2013, 15(4): 217-225. |
26 | Zhu J Y, Yu Q, Liu Y P, et al. Response of plant functional traits and leaf economics spectrum to urban thermal environment. Journal of Beijing Forestry University, 2018, 40(9): 72-81. |
朱济友, 于强, 刘亚培, 等. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报, 2018, 40(9): 72-81. | |
27 | Zhu J Y, Xu C Y, Qin G M, et al. Responses of leaf functional characters of three typical greening plants to air pollution and leaf economic spectrum analysis: A Beijing city as the study case. Journal of Central South University of Forestry & Technology, 2019, 39(3): 91-98. |
朱济友, 徐程扬, 覃国铭, 等. 3种典型绿化植物叶功能性状对大气污染的响应及其叶经济谱分析——以北京市为例. 中南林业科技大学学报, 2019, 39(3): 91-98. | |
28 | Chen Y T, Xu Z Z. Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153. |
陈莹婷, 许振柱. 植物叶经济谱的研究进展. 植物生态学报, 2014, 38(10): 1135-1153. | |
29 | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827. |
30 | Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102(2): 275-301. |
31 | Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 2013, 198(4): 983-1000. |
32 | Zwieniecki M A, Boyce C K. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology. Proceedings of the Royal Society B: Biological Sciences, 2014, 281: 2013-2829. |
33 | Jin Y, Wang C K. Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 2015, 39(10): 1021-1032. |
金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 2015, 39(10): 1021-1032. | |
34 | Scoffoni C, Albuquerque C, Brodersen C R, et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 2016, 213(3): 1076. |
35 | Males J, Griffiths H. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae. Plant, Cell and Environment, 2018, 41(1): 64-78. |
36 | Li X M, Blackman C J, Choat B, et al. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant, Cell and Environment, 2018, 41(3): 646-660. |
37 | Yin Q, Wang L, Lei M L, et al. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability. Science of the Total Environment, 2018, 621(15): 245-252. |
38 | Brodribb T J, Feild T S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 2010, 13(2): 175-183. |
39 | Brodribb T J, Feild T S, Jordan G J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 2007, 144(4): 1890-1898. |
40 | Liu H, Xu Q, He P, et al. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Scientific Reports, 2015, 5: 12246. |
41 | Li L, Luke McCormack M, Ma C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 2015, 18: 899-906. |
42 | Maréchaux I, Bartlett M K, Sack L, et al. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 2015, 29(10): 1268-1277. |
43 | Yuan Z W, Sun X M. The research summary of identification index of drought resistance and its evaluation method. Gansu Agricultural Science and Technology, 2012, 11: 36-39. |
袁志伟, 孙小妹. 作物抗旱性鉴定指标及评价方法研究进展. 甘肃农业科技, 2012, 11: 36-39. | |
44 | Baltzer J L, Thomas S C, Henrik B H. A second dimension to the leaf economics spectrum predicts edaphic habitat association in a tropical forest. PLoS One, 2010, 5(10): e13163. |
45 | Reich P B, Tilman D, Isbell F, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science, 2012, 336(6081): 589-592. |
46 | Leishman M R, Thomson V P, Cooke J. Native and exotic invasive plants have fundamental similar carbon capture strategies. Journal of Ecology, 2010, 98(1): 28-42. |
47 | Fortunel C, Fine P V A, Baraloto C. Leaf, stem and root tissue strategies across 758 Neotropical tree species. Functional Ecology, 2012, 26(5): 1153-1161. |
48 | Li X R, Zhang Z S, Huang L, et al. Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China. Chinese Science Bulletin, 2013, 58(13): 1483-1496. |
李新荣, 张志山, 黄磊, 等. 我国沙区人工植被系统生态-水文过程和互馈机理研究评述. 科学通报, 2013, 58(13): 1483-1496. | |
49 | Jian J, Jia D B, Guo S F, et al. Water sources in growing season of Salix gordejevii in the Otindag sandy land traced by stable isotope in 2014. Arid Zone Research, 2017, 34(2): 350-355. |
菅晶, 贾德彬, 郭少峰, 等. 2014年浑善达克沙地黄柳生长季水分来源同位素示踪研究. 干旱区研究, 2017, 34(2): 350-355. | |
50 | Su H, Li Y, Liu W, et al. Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China. Trees, 2014, 28: 41-52. |
51 | Dai Y, Zheng X J, Tang L S, et al. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 2015, 389: 73-87. |
52 | Yang G M, Wang A, Wang L. Water source and water use efficiency of two typical shrubs in different seasons in Liudaogou watershed. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(1): 140-149. |
杨国敏, 王爱, 王力. 六道沟流域2种典型灌木不同季节水分来源及利用效率. 西北植物学报, 2018, 38(1): 140-149. | |
53 | Gong X W, Guo J J, Jiang D M, et al. Contrasts in xylem hydraulics and water use underlie the sorting of different sand-fixing shrub species to early and late stages of dune stabilization. Forest Ecology and Management, 2020, 457: 117705. |
54 | Moreno-Gutiérrez C, Dawson T E, Nicolás E, et al. Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 2012, 196: 489-496. |
55 | Wang Y N, Xiong W, Wang Y H, et al. A review on leaf water use efficiency of major trees species in arid and semi-arid area. World Forestry Research, 2012, 25(2): 17-23. |
王云霓, 熊伟, 王彦辉, 等. 干旱半干旱地区主要树种叶片水分利用效率研究综述. 世界林业研究, 2012, 25(2): 17-23. | |
56 | Choat B, Brodribb T J, Brodersen C R, et al. Triggers of tree mortality under drought. Nature, 2018, 558: 531-539. |
57 | Li B, Wang Y, Hill R L, et al. Effects of apple orchards converted from farmlands on soil water balance in the deep loess deposits based on HYDRUS-1D model. Agriculture, Ecosystems and Environment, 2019, 285: 106645. |
58 | Huang M B, Gallichand J. Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China. Agricultural Water Management, 2006, 85: 67-76. |
59 | Li X F, Li J, Wang X C, et al. Simulation of water productivity and soil desication of Caragana microphylla shrub land on semi-arid hilly region of the loess plateau. Agricultural Research in the Arid Areas, 2007, 25(3): 113-119. |
李小芳, 李军, 王学春, 等. 半干旱黄土丘陵区柠条林水分生产力和土壤干燥化效应模拟研究. 干旱地区农业研究, 2007, 25(3): 113-119. | |
60 | Li J, Wang X C, Shao M A, et al. Simulation of water productivity and soil desiccation effects of different planting density black locust forestlands on the Loess Plateau. Acta Ecologica Sinica, 2008, 28(7): 3125-3142. |
李军, 王学春, 邵明安, 等. 黄土高原不同密度刺槐 (Robinia pseudoacia) 林地水分生产力与土壤干燥化效应模拟. 生态学报, 2008, 28(7): 3125-3142. | |
61 | Li J, Wang X C, Shao M A, et al. Simulation of water-limiting biomass productivity of Chinese pine plantations and the soil desiccation effect in 3 sites with different annual precipitation on Loess Plateau. Scientia Silvae Sinicae, 2010, 46(11): 25-35. |
李军, 王学春, 邵明安, 等. 黄土高原3个不同降水量地点油松林地水分生产力与土壤干燥化效应模拟. 林业科学, 2010, 46(11): 25-35. | |
62 | McDowell N G, Fisher R A, Xu C, et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytologist, 2013, 200: 304-321. |
63 | Gharsallah O, Facchi A, Gandolfi C. Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agricultural Water Management, 2013, 130: 119-130. |
64 | Sperry J S, Wang Y J, Wolfe B T, et al. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 2016, 212: 577-589. |
65 | Mackay D S, Ewers B E, Loranty M M, et al. Bayesian analysis of canopy transpiration models: A test of posterior parameter means against measurements. Journal of Hydrology, 2012, 432: 75-83. |
66 | Tai X N, Mackay D S, Sperry J S, et al. Distributed plant hydraulic and hydrological modeling to understand the susceptibility of riparian woodland trees to drought-induced mortality. Water Resources Research, 2018, 54: 4901-4915. |
67 | Lawlor D W. Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. Journal of Experimental Botany, 2013, 64(1): 83-108. |
68 | Gong J R, Zhang L X, Zhao A F, et al. Elementary studies on physiological and bio-chemical anti-drought features of Artemisia ordosica. Journal of Desert Research, 2002, 22(4): 387-392. |
龚吉蕊, 张立新, 赵爱芬, 等. 油蒿(Artemisia ordosica)抗旱生理生化特性研究初报. 中国沙漠, 2002, 22(4): 387-392. | |
69 | Yu L F, Zhu S Q, Ye J Z. Preliminary study on the adaptability of tolerate-drought for different species group in Karst forest. Journal of Nanjing Forestry University (Natural Sciences Edition), 2002, 26(1): 19-22. |
俞理飞, 朱守谦, 叶镜中. 喀斯特森林不同种组的耐旱适应性. 南京林业大学学报(自然科学版), 2002, 26(1): 19-22. | |
70 | Zhang D Y, Yin L K, Pan B R. Study on drought-resisting mechanism of Tamrix L. and assessing of its potential application. Journal of Desert Research, 2003, 23(3): 252-256. |
张道远, 尹林克, 潘伯荣. 柽柳属植物抗旱性能研究及其应用潜力评价. 中国沙漠, 2003, 23(3): 252-256. | |
71 | Li J Y. Mechanisms of drought tolerance in plants. Journal of Beijing Forestry University, 1991, 13(3): 92-100. |
李吉跃. 植物耐旱性及其机理. 北京林业大学学报, 1991, 13(3): 92-100. | |
72 | Wei Y S, Liang Z S, Shan L, et al. Comprehensive evaluation on alfalfa drought-resistance traits by subordinate function values analysis. Pratacultural Science, 2005, 22(6): 33-36. |
魏永胜, 梁宗锁, 山仑, 等. 利用隶属函数值法评价苜蓿抗旱性. 草业科学, 2005, 22(6): 33-36. | |
73 | Wang D, Zhang L Q, Xue J H. The study on comprehensive evaluation of seedlings’ drought resistance-example of 6 forestation seedlings in Karst mountainous region. Chinese Agricultural Science Bulletin, 2011, 27(25): 5-12. |
王丁, 张丽琴, 薛建辉. 苗木抗旱性综合评价研究——以6种喀斯特造林树种苗木为例. 中国农学通报, 2011, 27(25): 5-12. | |
74 | Feng X Y, Yu Z Y, Zhong P F. Evaluation of seeding drought resistance of five species in the genus Picea Linn. from different provenance. Journal of Gansu Agricultural University, 2012, 47(1): 95-102. |
冯祥元, 于柱英, 种培芳. 不同种源地云杉的苗期抗旱性评价. 甘肃农业大学学报, 2012, 47(1): 95-102. |
[1] | 南铭, 王兴荣, 李晶, 刘彦明, 张成君, 柴继宽, 赵桂琴. 燕麦抗倒伏性状的基因型差异[J]. 草业学报, 2023, 32(11): 106-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||