草业学报 ›› 2014, Vol. 23 ›› Issue (6): 207-216.DOI: 10.11686/cyxb20140625
安勐颍,孙珊珊,濮阳雪华,韩烈保*
收稿日期:
2013-12-09
出版日期:
2014-12-20
发布日期:
2014-12-20
通讯作者:
E-mail:hanliebao@163.com
作者简介:
安勐颍(1989-),女,吉林吉林人,在读硕士
基金资助:
AN Meng-ying,SUN Shan-shan,PUYANG Xue-hua,HAN Lie-bao
Received:
2013-12-09
Online:
2014-12-20
Published:
2014-12-20
摘要: 盐胁迫严重危害草坪草的正常生长并且限制其大面积建植,尤其是对耐盐性相对较差的草地早熟禾。本试验以耐盐性不同的2个草地早熟禾品种‘兰肯(Kenblue)’和‘午夜(Midnight)’作为试验材料,采用MS培养基作为培养基质,以200 mmol/L的 NaCl为胁迫条件,施用浓度为1 mmol/L的外源亚精胺(Spd),研究了盐胁迫下外源亚精胺对草地早熟禾幼苗生长及其相关生理指标的影响。结果表明,外源Spd处理能够缓解盐胁迫对草地早熟禾根系和幼苗生长的抑制,提高APX、CAT、POD和SOD的活性以及脯氨酸的含量,减少体内活性氧H2O2和
中图分类号:
安勐颍,孙珊珊,濮阳雪华,韩烈保. 外源亚精胺调控草地早熟禾幼苗耐盐性的研究[J]. 草业学报, 2014, 23(6): 207-216.
AN Meng-ying,SUN Shan-shan,PUYANG Xue-hua,HAN Lie-bao. Effect of exogenous spermidine on salt tolerance in Kentucky bluegrass seedlings under salinity stress[J]. Acta Prataculturae Sinica, 2014, 23(6): 207-216.
Reference:[1]Zhang J L,Shi H Z.Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115: 1-22.[2]Li J ,Zhang J l,Wang S M. Floret alkali MAO PutHKT2;Over 1 gene cDNA cloning and bioinformatics analysis[J]. Acta Prataculturae Sinica, 2013, 22(2): 140-149.[3]Zhang J L,Flowers T J,Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[4]Mudgal V, Madaan N,Mudgal A. Biochemical mechanisms of salt tolerance in plants: A review[J]. International Journal of Botany, 2010, 6: 136-143.[5]Parida A K, Das A B.Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60: 324-349.[6]Minocha R, Long S,Thangavel P,et al.Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH, USA[J]. Forest Ecology Management, 2010,260: 2115-2124.[7]Gill S S, Tuteja N.Polyamines and abiotic stress tolerance in plants[J]. Plant Signal & Behavior, 2010, 5: 26-33.[8]Kamala G, Abhijit D,Bhaskar G. Plant polyamines in abiotic stress responses[J]. Acta Physiologiae Plant, 2013, 35: 2015-2036.[9]Kasukabe Y, He L X, Nada K,et al.Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana[J]. Plant and Cell Physiology, 2004, 45(6): 712-722.[10]Sanaullah M. Effects of spermine and abscisic acid on growth and biochemical contents of Vigna mugo L. under high temperature and salt-stress[J]. Pakistan Journal of Biological Sciences, 1999, 2: 1375-1377.[11]Chattopadhayay M K, Tiwari B S,Chattopadhyay G,et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants[J]. Plant Physiology, 2002, 116: 192-199.[12]Verma S, Mishra S N. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defence system[J]. Journal of Plant Physiology, 2005, 162: 669-677.[13]Duan J J, Li J,Guo S R,et al.Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance[J]. Journal of Plant Physiology, 2008, 165: 1620-1635.[14]Roychoudhury A, Basu S,Sengupta D N. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of rice differing in their level of salt tolerance[J]. Journal of Plant Physiology, 2011,168: 317-328.[15]Hu X H, Zhang Y,Shi Y,et al.Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinitye-alkalinity mixed stress[J]. Plant Physiology and Biochemistry, 2012, 57: 200-209.[16]Sharma D K, Dubey A K, Manish S,et al.Effect of paclobutrazol and putrescine on antioxidant enzymes activity and nutrients content in salt tolerant citrus rootstock sour orange under sodium chloride stress[J]. Journal of Plant Nutrition, 2013, 36: 1765-1779. [17]Hussain S S, Ali M, Ahmad M,et al.Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants[J]. Biotechnology Advances, 2011, 29: 300-311.[18]Duan J J,Guo S R,Kang Y Y,et al. Effects of Exogenous Spermidine on Polyamine Content and Antioxidant System in Roots of Cucumber Under Salinity Stress[J]. Journal of Ecology and Rural Environment ,2007, 23(4): 11-17.[19]W ang S P,Jia Y X,Guo S R,et al. Effects of polyamines on K+, Na+ and Cl- contents and distribution in different organs of cucumber (Cucumis sativus L.) seedlings under NaCl stress[J]. Acta Ecologica Sinica, 2007, 27(3): 1122-1129.[20]Jiang X Y, Song J, Fan H,et al.Regulation of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress[J]. Acta Photophysiological Sinica, 2000, 26(6): 539-544.[21]Jiang X Y, Zhao K F,Dou J X,et al.The Effects of exogenous spermidine and dicyclohexylamine on the content of endogenous polyamines and salt resistance of atriplex under NaCI stress[J]. Plant Physiology Communications, 2001, 37(1): 6-9.[22]Han L B,Yang P,Deng J F. Lawn grasses and varieties[M]. Beijing: China Forestry Publishing House, 1999.[23]Sun J X.Lawn School[M]. Beijing: China Agriculture Press,1995.[24]Hu S L. Golf and sports turf planting design and management[M]. Beijing: China Forestry Publishing House, 1999.[25]Fricker C R, Li B J.Salt tolerance turfgrass breeding[J]. Pratacultural Science, 2005, (3): 102-106.[26]Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture[J]. Plant Physiology, 1962, 15: 473-497.[27]Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J].Crop Science, 1981, 21: 43-47.[28]Zhao S J,Xu C C,Zou Y,et al.The determination method of malondialdehyde in plant tissue[J]. Plant Physiology Communications, 1994, 30(3): 207-210.[29]Bates L S, Waldren R P,Teare I D.Rapid determination of free proline for water-stress studies[J]. Plant and Soil, 1973, 39: 205-207.[30]Sergiev I, Alexieva V, Karanov E.Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants[J]. Compt Rend Acad Bulg Science, 1997, 51: 121-124.[31]Wang K H, Zhang X Z, Erik E.Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin[J]. Journal of plant physiology, 2012, 169: 492-500.[32]Zhang J X, Kirkham M B.Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants[J]. Plant Science, 1996, 113(2): 139-147.[33]Greweling T. Chemical Analysis of Plant Tissue[M]. New York: Cornell University Agricultural Experiment Station, 1976: 1-35.[34]Jones J B,Wolf J B, Mills H A. Plant Analysis Handbook[M]. Athens, Georgia: Micro-Macro Publishing, Inc., 1991.[35]Chen L,Huang G Y. Effect of Paclobutrazol on Salt Tolerance of Festuca arundinacea[J]. Effect of Paclobutrazol on Salt Tolerance of Festuca arundinacea, 2009, 7: 46-48.[36]Xu R,Yamada M,Fujiyama H. Lipid peroxidation and antioxidative enzymes of two turfgrass species under salinity stress[J]. Pedosphere,2013, 23(2): 213-222.[37]Song C B.Some environmental factors on four kinds of lawn CaoZhongZi germination and the influence of the root system configuration[D]. Suzhou: Suzhou University, 2010.[38]Yang S S,Gao J F.Influence of active oxygen and free radicalson plant senescence[J]. Acta Botanica Boreali-Occidentalia Sinica, 2001, 21(2): 215-220.[39]Quan X Q,Gao W.Enzymatic Mechanism of Scavenging Reactive Oxygen Species of Euhalophytes[J]. Journal of Anhui Agricultural Science, 2003, 31(2): 320-332.[40]Bowler C,Montagu M V,Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992, 43: 83-116.[41]Lu S Y,Peng X X,Guo Z F,et al. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis×C. dactylon) and their physiological responses to salt and drought stress[J]. Plant Cell Reports,2007,26: 1413-1420.[42]Razmjoo K,Suguria Y,Kaneko S.Relative cold,flood and salt tolerance of Cynodon turfgrass[J]. International Turfgrass Society Research Journal,1995,8: 1314-1321.[43]Wang R X,Zhou X Y,Ge J G.Physiological response of three warm-season turfgrasses to soil salt stress[J]. Journal of Anhui Agricultural University, 2010, 37(4): 720-725.[44]Masoud A,Mohsen K,Mesbah B,et al.Improvement of salt tolerance in kentucky bluegrass by trinexapac-ethyl[J]. HortScience,2012, 47(8): 1163-1170.[45]Chen S L,Li J K,Yin W L,et al. Tissue and cellular K+, Ca2+ and Mg2+ of poplar under saline salt stress conditions[J]. Journal of Beijing Forestry University , 2002, 24(5, 6): 84-88.[46]Yu W W,Cao B H,Wu l Y. Growths and mineral nutrient balance of black locust clones under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica,2005, 25(10): 2097-2102.参考文献:[1]Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115: 1-22.[2]李剑, 张金林, 王锁民. 小花碱茅PutHKT2;1基因全长cDNA的克隆与生物信息学分析[J]. 草业学报, 2013, 22(2): 140-149.[3]Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant[J]. Plant and Soil, 2010, 326(1): 45-60.[4]Mudgal V, Madaan N, Mudgal A. Biochemical mechanisms of salt tolerance in plants: A review[J]. International Journal of Botany, 2010, 6: 136-143.[5]Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60: 324-349.[6]Minocha R, Long S, Thangavel P,et al. Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest, NH, USA[J]. Forest Ecology Management, 2010,260: 2115-2124.[7]Gill S S, Tuteja N. Polyamines and abiotic stress tolerance in plants[J]. Plant Signal & Behavior, 2010, 5: 26-33.[8]Kamala G, Abhijit D, Bhaskar G. Plant polyamines in abiotic stress responses[J]. Acta Physiologiae Plant, 2013, 35: 2015-2036.[9]Kasukabe Y, He L X, Nada K,et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress regulated genes in transgenic Arabidopsis thaliana[J]. Plant and Cell Physiology, 2004, 45(6): 712-722.[10]Sanaullah M. Effects of spermine and abscisic acid on growth and biochemical contents of Vigna mugo L. under high temperature and salt-stress[J]. Pakistan Journal of Biological Sciences, 1999, 2: 1375-1377.[11]Chattopadhayay M K, Tiwari B S, Chattopadhyay G,et al. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants[J]. Plant Physiology, 2002, 116: 192-199.[12]Verma S, Mishra S N. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defence system[J]. Journal of Plant Physiology, 2005, 162: 669-677.[13]Duan J J, Li J, Guo S R,et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance[J]. Journal of Plant Physiology, 2008, 165: 1620-1635.[14]Roychoudhury A, Basu S, Sengupta D N. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of rice differing in their level of salt tolerance[J]. Journal of Plant Physiology, 2011,168: 317-328.[15]Hu X H, Zhang Y, Shi Y,et al. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinitye-alkalinity mixed stress[J]. Plant Physiology and Biochemistry, 2012, 57: 200-209.[16]Sharma D K, Dubey A K, Manish S,et al. Effect of paclobutrazol and putrescine on antioxidant enzymes activity and nutrients content in salt tolerant citrus rootstock sour orange under sodium chloride stress[J]. Journal of Plant Nutrition, 2013, 36: 1765-1779. [17]Hussain S S, Ali M, Ahmad M,et al. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants[J]. Biotechnology Advances, 2011, 29: 300-311.[18]段九菊, 郭世荣, 康云艳, 等. 外源亚精胺对盐胁迫下黄瓜根系多胺含量和抗氧化系统的影响[J]. 生态与农村环境学报,2007, 23(4): 11-17.[19]王素平, 贾永霞, 郭世荣, 等. 多胺对盐胁迫下黄瓜幼苗体内K+、Na+和Cl-含量及器官间分布的影响[J]. 生态学报, 2007, 27(3): 1122-1129.[20]Jiang X Y, Song J, Fan H,et al. Regulation of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress[J]. Acta Photophysiological Sinica, 2000, 26(6): 539-544.[21]江行玉, 赵可夫, 窦君霞, 等. NaCl胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响[J]. 植物生理学通讯, 2001, 37(1): 6-9.[22]韩烈保, 杨碚, 邓菊芬. 草坪草种及其品种[M]. 北京: 中国林业出版社, 1999.[23]孙吉雄. 草坪学[M]. 北京: 中国农业出版社,1995.[24]胡叔良. 高尔夫球场及运动草坪设计建植与管理[M]. 北京: 中国林业出版社, 1999.[25]Fricker C R, 李保军. 耐盐草坪草育种[J]. 草业科学, 2005, (3): 102-106.[26]Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture[J]. Plant Physiology, 1962, 15: 473-497.[27]Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat[J].Crop Science, 1981, 21: 43-47.[28]赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207-210.[29]Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil, 1973, 39: 205-207.[30]Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants[J]. Compt Rend Acad Bulg Science, 1997, 51: 121-124.[31]Wang K H, Zhang X Z, Erik E. Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: effects of nitrogen and cytokinin[J]. Journal of plant physiology, 2012, 169: 492-500.[32]Zhang J X, Kirkham M B. Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants[J]. Plant Science, 1996, 113(2): 139-147.[33]Greweling T. Chemical Analysis of Plant Tissue[M]. New York: Cornell University Agricultural Experiment Station, 1976: 1-35.[34]Jones J B, Wolf J B, Mills H A. Plant Analysis Handbook[M]. Athens, Georgia: Micro-Macro Publishing, Inc., 1991.[35]陈兰, 黄广远. 多效唑对盐胁迫下高羊茅耐盐性的影响[J]. 草业与畜牧, 2009, 7: 46-48.[36]Xu R,Yamada M,Fujiyama H. Lipid peroxidation and antioxidative enzymes of two turfgrass species under salinity stress[J]. Pedosphere,2013, 23(2): 213-222.[37]宋采博. 部分环境因子对四种草坪草种子发芽和根系构型的影响[D]. 苏州: 苏州大学, 2010.[38]杨淑慎, 高俊凤. 活性氧、自由基与植物的衰老[J]. 西北植物学报, 2001, 21(2): 215-220.[39]全先庆, 高文. 盐生植物活性氧的酶促清除机制[J]. 安徽农业科学, 2003, 31(2): 320-332.[40]Bowler C,Montagu M V,Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992, 43: 83-116.[41]Lu S Y,Peng X X,Guo Z F,et al. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis×C. dactylon) and their physiological responses to salt and drought stress[J]. Plant Cell Reports,2007,26: 1413-1420.[42]Razmjoo K,Suguria Y,Kaneko S. Relative cold,flood and salt tolerance of Cynodon turfgrass[J]. International Turfgrass Society Research Journal,1995,8: 1314-1321.[43]王润贤, 周兴元, 葛晋纲. 3种暖季型草坪草对土壤盐分胁迫的生理响应[J]. 安徽农业大学学报, 2010, 37(4): 720-725.[44]Masoud A,Mohsen K,Mesbah B,et al. Improvement of salt tolerance in kentucky bluegrass by trinexapac-ethyl[J]. HortScience,2012, 47(8): 1163-1170.[45]陈少良, 李金克, 尹伟伦, 等. 盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J]. 北京林业大学学报, 2002, 24(5, 6): 84-88.[46]郁万文, 曹帮华, 吴丽云. 盐胁迫下刺槐无性系生长和矿质营养平衡研究[J]. 西北植物学报,2005, 25(10): 2097-2102. |
[1] | 柴华,方江平,温丁,李杰,何念鹏. 内蒙古灌丛化草地取样位置对评估土壤碳氮贮量的影响[J]. 草业学报, 2014, 23(6): 28-35. |
[2] | 王书转,郝明德,普琼,吴振海. 黄土区苜蓿人工草地群落生态与生产功能演替[J]. 草业学报, 2014, 23(6): 1-10. |
[3] | 陈祖刚,巴图娜存,徐芝英,胡云锋. 基于数码相机的草地植被盖度测量方法对比研究[J]. 草业学报, 2014, 23(6): 20-27. |
[4] | 徐沙,龚吉蕊,张梓榆,刘敏,王忆慧,罗亲普. 不同利用方式下草地优势植物的生态化学计量特征[J]. 草业学报, 2014, 23(6): 45-53. |
[5] | 李金辉,卢鑫,周志宇,赵萍,金茜,周媛媛. 不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J]. 草业学报, 2014, 23(6): 61-68. |
[6] | 陈骥,曹军骥,魏永林,刘吉宏,马扶林,陈迪超,冯嘉裕,夏瑶,岑燕. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6): 78-86. |
[7] | 李欣勇,王彦荣,贾存智. 施尿素对无芒隐子草草坪生长特性的影响[J]. 草业学报, 2014, 23(6): 136-141. |
[8] | 周向睿,岳利军,王锁民. 钠复合肥提高多浆旱生植物霸王幼苗生长及抗旱性[J]. 草业学报, 2014, 23(6): 142-147. |
[9] | 闫钟清,齐玉春,董云社,彭琴,孙良杰,贾军强,曹丛丛,郭树芳,贺云龙. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014, 23(6): 279-292. |
[10] | 张志南,武高林,王冬,邓蕾,郝红敏,杨政,上官周平. 黄土高原半干旱区天然草地群落结构与土壤水分关系[J]. 草业学报, 2014, 23(6): 313-319. |
[11] | 罗黎鸣,苗彦军,武建双,潘影,土艳丽,余成群,赵延,赵贯锋,武俊喜. 拉萨河谷山地灌丛草地物种多样性随海拔升高的变化特征[J]. 草业学报, 2014, 23(6): 320-326. |
[12] | 王雪芳,王春梅,张金林,段丽婕,王锁民. 小花碱茅组织培养植株再生体系的建立[J]. 草业学报, 2014, 23(6): 355-360. |
[13] | 王春燕,张晋京,吕瑜良,王莉,何念鹏. 长期封育对内蒙古羊草草地土壤有机碳组分的影响[J]. 草业学报, 2014, 23(5): 31-39. |
[14] | 于雯超,宋晓龙,修伟明,张贵龙,赵建宁,杨殿林. 氮素添加对贝加尔针茅草原凋落物分解的影响[J]. 草业学报, 2014, 23(5): 49-60. |
[15] | 卢虎,李显刚,姚拓,蒲小鹏. 高寒生态脆弱区“黑土滩”草地植被与土壤微生物数量特征研究[J]. 草业学报, 2014, 23(5): 214-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||