草业学报 ›› 2014, Vol. 23 ›› Issue (3): 8-12.DOI: 10.11686/cyxb20140302
胡雷1,王长庭1,*,王根绪2,马力1,刘伟3,向泽宇4
收稿日期:
2013-09-26
出版日期:
2014-06-20
发布日期:
2014-06-20
通讯作者:
E-mail:wangct6@163.com
作者简介:
胡雷(1991-),男,河南舞阳人,在读硕士。E-mail:hl007873@sohu.com
基金资助:
HU Lei1,WANG Chang-ting1,WANG Gen-xu2,MA Li1,LIU Wei3,XIANG Ze-yu4
Received:
2013-09-26
Online:
2014-06-20
Published:
2014-06-20
摘要: 对三江源区不同退化演替阶段的高寒草甸土壤酶活性和微生物群落结构进行分析,结果表明:1)土壤微生物种类和数量并不随着高寒草甸的退化而降低,而是在中度退化阶段达到最高;2)不同退化演替过程,中度退化阶段土壤微生物的结构更加复杂;3)不同土层中,0~10 cm土壤微生物的多样性更加丰富,其群落结构能更好地适应外界环境的变化;4)5种土壤酶的酶活性均随土层深度的增加而显著降低(P<0.05)。在不同退化演替阶段,碱性磷酸酶的活性随演替的进行而显著降低(P<0.05);蛋白酶和多酚氧化酶的酶活性最大值出现在中度退化演替阶段,最小值则在未退化阶段(原生植被)出现;蔗糖酶和脲酶活性在4个演替阶段中均无显著变化(P>0.05)。不同酶活性对外界环境变化敏感性不同,蛋白酶、碱性磷酸酶和多酚氧化酶具有较高的敏感性,而脲酶和蔗糖酶活性的敏感性较低;5)土壤酶活性与土壤微生物在高寒草甸不同退化演替阶段具有显著相关性(P<0.05)。土壤酶活性、土壤微生物群落结构可以作为一个综合指标,来指示三江源区高寒草甸的演替阶段和退化程度。
中图分类号:
胡雷,王长庭,王根绪,马力,刘伟,向泽宇. 三江源区不同退化演替阶段高寒草甸土壤酶活性和微生物群落结构的变化[J]. 草业学报, 2014, 23(3): 8-12.
HU Lei,WANG Chang-ting,WANG Gen-xu,MA Li,LIU Wei,XIANG Ze-yu. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China[J]. Acta Prataculturae Sinica, 2014, 23(3): 8-12.
Reference:[1]Cao G M, Long R J. The bottleneck and its resolutions to the natural recovery of black soil type degraded grassland in the Three River Source Region[J]. Acta Agrectir Sinica, 2009, (1): 4-9.[2]Shang Z H, Long R J, Ma Y S. Review on environmental problems in the headwater areas of Yangtze and Yellow Rivers in Qinghai-Tibetan Plateau[J]. Pratacultural Science, 2007, (3): 1-7.[3]Wang X G, Cheng G D. Characteristics of grassland and ecological changes of vegetations in the Source Regions of Yangtze and Yellow Rivers[J]. Journal of Desert Research, 2001, (2): 101-107.[4]Li Y N, Zhao X Q, Cao G M, et al. Analyses on climates and vegetation productivity background at Haibei Alpine Meadow ecosystem research station[J]. Plateau Meteorology, 2004, (4): 558-567.[5]Li X L, Huang B N. The cause of "black soil patch" grassland in Qinghai Province and management Countermeasures.[J]. Grassland of China, 1995, (4): 64-67.[6]Ma Y S, Wang Q J. Review and prospect of the study on‘black soil type’deteriorated grassland[J]. Pratacultural Science, 1999, 16(2): 5-9.[7]Liu W, Li Y F. Ecologieal process of forming "black-soil-type" degraded grassland[J]. Acta Agrestia Sinica, 1999, 7(4): 300-307.[8]Wang S P. Vegetation degradation and protection strategy in the "Three rivers fountainhead" area in the Qinghai Province[J]. Acta Prataculturae Sinica, 2003, 12(6): 1-9.[9]Wang C T, Long R J, Wang Q L, et al. Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of Alpine Meadows in the Headwater Region of Three Rivers in China[J]. Chinese Journal of Applied & Environmental Biology, 2008, (2): 225-230.[10]Sa R L, Hou X Y, Li J X. Organic carbon storage in vegetation-soil systems of typical grazing degraded steppes[J]. Acta Prataculturae Sinica, 2013, 22(5): 18-26.[11]An H, Xu K. The effect of grazing disturbance on soil properties in desert steppe[J]. Acta Prataculturae Sinica, 2013, 22(4): 35-42.[12]Cai X B, Zhou J, Qian C. Variation of soil microbial activities in alpine steppes different in degradation intensity in the north tibet plateau[J]. Acta Pedologica Sinica, 2008, (6): 1110-1118.[13]Wang X X, Dong S K, Li Y Y, et al. Effects of grassland degradation and artificial restoration on soil physicochemical properties in Three-river Headwater[J]. Journal of Soil and Water Conservation, 2012, (4): 113-117, 122.[14]Zhang L,Dang J, Liu W, et al. Effects of continuous enclosure and fertilization on soil microbial community structure in alpine meadow[J]. Chinese Journal of Applied Ecology, 2012, (11): 3072-3078.[15]Garcia C, Hernández T. Biological and biochemical indicators in derelict soils subject to erosion[J]. Soil Biology and Biochemistry, 1997, 29(2): 171-177.[16]Wang D M, Wang C Z, Han X R, et al. Effects of long-term application of fertilizers on some enzymatic activities in Brunisolic soil[J]. Chinese Journal of Soil Science, 2006, (2): 2263-2267.[17]Salam A K, Katayama A, Kimura M. Activities of some soil enzymes in different land use systems after deforestation in hilly areas of west lampung, south sumatra, indonesia[J]. Soil Science and Plant Nutrition, 1998, 44(1): 93-103.[18]Rasmussen L D, Srensen S J. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil[J]. FEMS Microbiology Ecology, 2001, 36(1): 1-9.[19]Hu Y S, Wu K, Li C X, et al. Effect of continuous cropping of cucumber on soil microbial population ⅱ——variation analysis based on DGGE approach[J]. Scientia Agricultura Sinica, 2007, 40(10): 2267-2273.[20]Liu B R, Jia G M, Chen J, et al. A review of methods for studying microbial diversity in soils[J]. Pedosphere, 2006, 16(1): 18-24.[21]Zhang R F, Cui Z L, Li S P. Advance in methods for research on soil microbial community structure[J]. Soils, 2004, (5): 476-480, 515.[22]Barbour M G, Burk J H, Pitts W D. Terrestrial plant ecology[M]. California: Benjamin/Cummings, 1980.[23]Zheng D, Yao T D. The uplifting and environmental effectivity in Qinghai-Tibet Plateau[M]. Beijing: Science Press, 2004. [24]Zhou H, Zhao X, Tang Y, et al. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow rivers, China[J]. Grassland Science, 2005, 51(3): 191-203.[25]Guan S Y. Soil enzymes and its esearch methods[M]. Beijing: Agriculture Press, 1986.[26]Wang Q L, Cao G M, Wang C T. The impact of grazing on the activities of soil enzymes and soil environmental factors in alpine Kobresia pygmaea meadow[J]. Plant Nutrition and Fertilizer Science, 2007, (5): 856-864.[27]Frostegrd, Bth E, Tunlio A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biology and Biochemistry, 1993, 25(6): 723-730.[28]Bligh E, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911-917.[29]Phillips R L, Zak D R, Holmes W E, et al. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone[J]. Oecologia, 2002, 131(2): 236-244.[30]Madan R, Pankhurst C, Hawke B, et al. Use of fatty acids for identification of am fungi and estimation of the biomass of am spores in soil[J]. Soil Biology and Biochemistry, 2002, 34(1): 125-128.[31]Zak D R, Ringelberg D B, Pregitzer K S, et al. Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2[J]. Ecological Applications, 1996, 6(1): 257-262.[32]〖JP2〗Zogg G P, Zak D R, Ringelberg D Bet al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Science Society of America Journal, 1997, 61(2): 475-481.〖JP〗[33]Chinalia F, Killham K S. 2, 4 dichlorophenoxyacetic acid (2, 4 d) biodegradation in river sediments of northeast-Scotland and its effect on the microbial communities (PLFA and DGGE)[J]. Chemosphere, 2006, 64(10): 1675-1683.[34]McKinley V, Peacock A, White D. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils[J]. Soil Biology and Biochemistry, 2005, 37(10): 1946-1958.[35]Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities[J]. Chemosphere, 1997, 35(1): 275-294.[36]Frostegrd, Bth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils, 1996, 22(12): 59-65.[37]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review[J]. Biology and Fertility of Soils, 1999, 29(2): 111-129.[38]〖JP2〗White D, Stair J, Ringelberg D. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis[J]. Journal of Industrial Microbiology, 1996, 17(34): 185-196.〖JP〗[39]Sun B, Zhang T L, Zhao Q G. Fertility evolution of red soil derived from quaternary red clay in low-hilly region in middle subtropics ii. evolution of soil chemical and biological fertilities[J]. Acta Pedologica Sinica, 1999, (2): 203-217.[40]Loranger-Merciris G, Barthes L, Gastine A, et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems[J]. Soil Biology and Biochemistry, 2006, 38(8): 2336-2343.[41]Tilman D. Resource competition and community structure[M]. Princeton: Princeton University Press, 1982. [42]Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, (8): 979-988.[43]Wang W Y, Wang Q J, Wang G. Effects of land degradation and rehabilitation on soil carbon and nitrogen content on alpine Kobersia meadow[J]. Ecology and Environment, 2006, (2): 362-366.[44]Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology and Biochemistry, 2003, 35(1): 167-176.[45]Peacock A, Macnaughton S, Cantu J, et al. Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a long leaf pine habitat[J]. Ecological Indicators, 2001, 1(2): 113-121.[46]Pinkart H, Ringelberg D, Piceno Y, et al. Biochemical approaches to biomass measurements and community structure analysis[J]. Manual of Environmental Microbiology, 2002, 2: 101-113.[47]Liu X N, Sun J L, Zhang D G, et al. A study on the community structure and plant diversity of alpine meadow under different degrees of degradation in the Eastern Qilian Mountains[J]. Acta Prataculturae Sinica, 2008, 17(4): 1-11.[48]Feng R Z, Zhou W H, Long R J, et al. Characteristics of soil physical, chemical and biological properties on degraded alpine meadows in the Headwater Areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau[J]. Chinese Journal of Soil Science, 2010, (2): 263-269.[49]Wang X, Song N P, Yang X G. The response of grassland plant diversity to soil factors under grazing disturbance[J]. Acta Prataculturae Sinica, 2013, 22(5): 27-36.[50]Deng Y, Liu X N, Yan R R, et al. Soil respiration of Hulunber meadow steppe and response of its controlling factors to different grazing intensities[J]. Acta Prataculturae Sinica, 2013, 22(2): 22-29.[51]Shen H, Cao Z H. Xu B S. Dynamics of soil microbial biomass and soil enzyme activity and their relationships during maize growth.[J]. Chinese Journal of Applied Ecology, 1999, 10(4): 471-474.[52]Yang Z X, Liu S Q. Effect of compound pollution of heavy metals on soil enzymic activities[J]. Acta Scientiae Circumstantiae, 2001, (1): 60-63.[53]Shan G L, Chu X H, Luo F C, et al. Influence of exclosure period on soil micorganism and its enzyme activity in typical steppe[J]. Grassland and Turf, 2012, (1): 1-6.参考文献:[1]曹广民, 龙瑞军. 三江源区“黑土滩”型退化草地自然恢复的瓶颈及解决途径[J]. 草地学报, 2009, (1): 4-9.[2]尚占环, 龙瑞军, 马玉寿. 青藏高原江河源区生态环境安全问题分析与探讨[J]. 草业科学, 2007, (3): 1-7.[3]王根绪, 程国栋. 江河源区的草地资源特征与草地生态变化[J]. 中国沙漠, 2001, (2): 101-107.[4]李英年, 赵新全, 曹广民, 等. 海北高寒草甸生态系统定位站气候、植被生产力背景的分析[J]. 高原气象, 2004, (4): 558-567.[5]李希来, 黄葆宁. 青海黑土滩草地成因及治理途径[J]. 中国草地, 1995, (4): 64-67.[6]马玉寿, 王启基. “黑土型” 退化草地研究工作的回顾与展望[J]. 草业科学, 1999, 16(2): 5-9.[7]刘伟, 李有福. 高寒草甸 “黑土型” 退化草地的成因及生态过程[J]. 草地学报, 1999, 7(4): 300-307.[8]汪诗平. 青海省 “三江源” 地区植被退化原因及其保护策略[J]. 草业学报, 2003, 12(6): 1-9.[9]王长庭, 龙瑞军, 王启兰, 等. 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化[J]. 应用与环境生物学报, 2008, (2): 225-230.[10]萨茹拉, 侯向阳, 李金祥. 不同放牧退化程度典型草原植被—土壤系统的有机碳储量[J]. 草业学报, 2013, 22(5): 18-26.[11]安慧, 徐坤. 放牧干扰对荒漠草原土壤性状的影响[J]. 草业学报, 2013, 22(4): 35-42.[12]蔡晓布, 周进, 钱成. 不同退化程度高寒草原土壤微生物活性变化特征研究[J]. 土壤学报, 2008, (6): 1110-1118.[13]王学霞, 董世魁, 李媛媛, 等. 三江源区草地退化与人工恢复对土壤理化性状的影响[J]. 水土保持学报, 2012, (4): 113-117, 122.[14]张莉, 党军, 刘伟, 等. 高寒草甸连续围封与施肥对土壤微生物群落结构的影响[J]. 应用生态学报, 2012, (11): 3072-3078.[15]Garcia C, Hernández T. Biological and biochemical indicators in derelict soils subject to erosion[J]. Soil Biology and Biochemistry, 1997, 29(2): 171-177.[16]王冬梅, 王春枝, 韩晓日, 等. 长期施肥对棕壤主要酶活性的影响[J]. 土壤通报, 2006, (2): 2263-2267.[17]Salam A K, Katayama A, Kimura M. Activities of some soil enzymes in different land use systems after deforestation in hilly areas of west lampung, south sumatra, indonesia[J]. Soil Science and Plant Nutrition, 1998, 44(1): 93-103.[18]Rasmussen L D, Srensen S J. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil[J]. FEMS Microbiology Ecology, 2001, 36(1): 1-9.[19]胡元森, 吴坤, 李翠香, 等. 黄瓜连作对土壤微生物区系影响——基于 DGGE 方法对微生物种群的变化分析[J]. 中国农业科学, 2007, 40(10): 2267-2273.[20]Liu B R, Jia G M, Chen J,et al. A review of methods for studying microbial diversity in soils[J]. Pedosphere, 2006,16(1); 18-24.[21]张瑞福, 崔中利, 李顺鹏. 土壤微生物群落结构研究方法进展[J]. 土壤, 2004, (5): 476-480, 515.[22]Barbour M G, Burk J H, Pitts W D. Terrestrial Plant Ecology[M]. California: Benjamin/Cummings, 1980.[23]郑度, 姚檀栋. 青藏高原隆升与环境效应[M]. 北京: 科学出版社, 2004. [24]Zhou H, Zhao X, Tang Y,et al. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow rivers, China[J]. Grassland Science, 2005, 51(3): 191-203.[25]关松荫. 土壤酶及其研究方法[M]. 北京:农业出版社, 1986.[26]王启兰, 曹广民, 王长庭. 放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J]. 植物营养与肥料学报, 2007, (5): 856-864.[27]Frostegrd ,Bth E, Tunlio A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biology and Biochemistry, 1993, 25(6): 723-730.[28]Bligh E, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8): 911917.[29]Phillips R L, Zak D R, Holmes W E,et al. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone[J]. Oecologia, 2002, 131(2): 236-244.[30]Madan R, Pankhurst C, Hawke B,et al. Use of fatty acids for identification of am fungi and estimation of the biomass of am spores in soil[J]. Soil Biology and Biochemistry, 2002, 34(1): 125-128.[31]Zak D R, Ringelberg D B, Pregitzer K S,et al. Soil microbial communities beneath Populus grandidentatagrown under elevated atmospheric CO2[J]. Ecological Applications, 1996, 6(1): 257-262.[32]〖JP2〗Zogg G P, Zak D R, Ringelberg D B,et al. Compositional and functional shifts in microbial communities due to soil warming[J]. Soil Science Society of America Journal, 1997, 61(2): 475-481.〖JP〗[33]Chinalia F, Killham K S. 2, 4-dichlorophenoxyacetic acid (2, 4-d) biodegradation in river sediments of northeast-scotland and its effect on the microbial communities (PLFA and DGGE)[J]. Chemosphere, 2006, 64(10): 1675-1683.[34]McKinley V, Peacock A, White D. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils[J]. Soil Biology and Biochemistry, 2005, 37(10): 1946-1958.[35]Zelles L. Phospholipid fatty acid profiles in selected members of soil microbial communities[J]. Chemosphere, 1997, 35(1): 275-294.[36]Frostegrd ,Bth E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil[J]. Biology and Fertility of Soils, 1996, 22(1-2): 59-65.[37]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review[J]. Biology and Fertility of Soils, 1999, 29(2): 111-129.[38]〖JP2〗White D, Stair J, Ringelberg D. Quantitative comparisons of in situ microbial biodiversity by signature biomarker analysis[J]. Journal of Industrial Microbiology, 1996, 17(3-4): 185-196.〖JP〗[39]孙波, 张桃林, 赵其国. 我国中亚热带缓丘区红粘土红壤肥力的演化——化学和生物学肥力的演化[J]. 土壤学报, 1999, (2): 203-217.[40]Loranger-Merciris G, Barthes L, Gastine A,et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems[J]. Soil Biology and Biochemistry, 2006, 38(8): 2336-2343.[41]Tilman D. Resource Competition and Community Structure[M]. Princeton: Princeton University Press, 1982. [42]蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, (8): 979-988.[43]王文颖, 王启基, 王刚. 高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响[J]. 生态环境, 2006, (2): 362-366.[44]Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology and Biochemistry, 2003, 35(1): 167-176.[45]Peacock A, Macnaughton S, Cantu J,et al. Soil microbial biomass and community composition along an anthropogenic disturbance gradient within a long-leaf pine habitat[J]. Ecological Indicators, 2001, 1(2): 113-121.[46]Pinkart H, Ringelberg D, Piceno Y,et al. Biochemical approaches to biomass measurements and community structure analysis[J]. Manual of Environmental Microbiology, 2002, 2: 101-113.[47]柳小妮, 孙九林, 张德罡, 等. 东祁连山不同退化阶段高寒草甸群落结构与植物多样性特征研究[J]. 草业学报, 2008,17(4); 1-11.[48]冯瑞章, 周万海, 龙瑞军, 等. 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究[J]. 土壤通报, 2010, (2): 263-269.[49]王兴, 宋乃平, 杨新国. 放牧扰动下草地植物多样性对土壤因子的响应[J]. 草业学报, 2013, 22(5): 27-36.[50]邓钰, 柳小妮, 闫瑞瑞, 等. 呼伦贝尔草甸草原土壤呼吸及其影响因子对不同放牧强度的响应[J]. 草业学报, 2013, 22(2): 22-29.[51]沈宏, 曹志洪, 徐本生. 玉米生长期间土壤微生物量与土壤酶变化及其相关性研究[J]. 应用生态学报, 1999, 10(4): 471-474.[52]杨志新, 刘树庆. 重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J]. 环境科学学报, 2001, (1): 60-63.[53]单贵莲, 初晓辉, 罗富成, 等. 围封年限对典型草原土壤微生物及酶活性的影响[J]. 草原与草坪, 2012, (1): 1-6. |
[1] | 柴华,方江平,温丁,李杰,何念鹏. 内蒙古灌丛化草地取样位置对评估土壤碳氮贮量的影响[J]. 草业学报, 2014, 23(6): 28-35. |
[2] | 徐沙,龚吉蕊,张梓榆,刘敏,王忆慧,罗亲普. 不同利用方式下草地优势植物的生态化学计量特征[J]. 草业学报, 2014, 23(6): 45-53. |
[3] | 李金辉,卢鑫,周志宇,赵萍,金茜,周媛媛. 不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J]. 草业学报, 2014, 23(6): 61-68. |
[4] | 陈骥,曹军骥,魏永林,刘吉宏,马扶林,陈迪超,冯嘉裕,夏瑶,岑燕. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6): 78-86. |
[5] | 闫钟清,齐玉春,董云社,彭琴,孙良杰,贾军强,曹丛丛,郭树芳,贺云龙. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014, 23(6): 279-292. |
[6] | 张志南,武高林,王冬,邓蕾,郝红敏,杨政,上官周平. 黄土高原半干旱区天然草地群落结构与土壤水分关系[J]. 草业学报, 2014, 23(6): 313-319. |
[7] | 王春燕,张晋京,吕瑜良,王莉,何念鹏. 长期封育对内蒙古羊草草地土壤有机碳组分的影响[J]. 草业学报, 2014, 23(5): 31-39. |
[8] | 于雯超,宋晓龙,修伟明,张贵龙,赵建宁,杨殿林. 氮素添加对贝加尔针茅草原凋落物分解的影响[J]. 草业学报, 2014, 23(5): 49-60. |
[9] | 卢虎,李显刚,姚拓,蒲小鹏. 高寒生态脆弱区“黑土滩”草地植被与土壤微生物数量特征研究[J]. 草业学报, 2014, 23(5): 214-222. |
[10] | 杨阳,刘秉儒,宋乃平,杨新国. 人工柠条灌丛密度对荒漠草原土壤养分空间分布的影响[J]. 草业学报, 2014, 23(5): 107-115. |
[11] | 高海宁,马国泰,李彩霞,陈勇,宋涛,张勇,焦扬. 菌剂对铬(Ⅵ)污染土壤中坪草幼苗生理生化的影响[J]. 草业学报, 2014, 23(4): 189-194. |
[12] | 马琳雅,崔霞,冯琦胜,梁天刚. 2001-2011年甘南草地植被覆盖度动态变化分析[J]. 草业学报, 2014, 23(4): 1-9. |
[13] | 王翀,林慧龙,何兰,曹坳程. 紫茎泽兰潜在分布对气候变化响应的研究[J]. 草业学报, 2014, 23(4): 20-30. |
[14] | 邓少虹,林明月,李伏生,苏以荣,刘坤平. 施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响[J]. 草业学报, 2014, 23(4): 262-268. |
[15] | 吴强盛,袁芳英,费永俊,李莉,黄咏明. 菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响[J]. 草业学报, 2014, 23(4): 269-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||