Reference: [1] Niu X W. Cultivation and utilization of peashrub[M]. Taiyuan: Shanxi Science Education Press, 1988.[2] Zhang W, Hu Y G, Huang G H, et al. Soil microbial diversity of artificial peashrub plantation on North Loess Plateau of China[J]. Acta Microbiologica Sinica, 2007, 47(5): 751-756. [3] Dhillion S S, Zak J C. Microbial dynamics in arid ecosystem desertification and the potential role of mycorrhizas[J]. Revista Chilena de Historia Natural, 1993, 66: 253-270. [4] Liu R T, Li X B, Xin M, et al. Response of the ground arthropod community to exclosure of desert steppe in semi-arid regions[J]. Acta Prataculturae Sinica, 2012, 21(1): 66-74. [5] Zhang L Z, Niu W, Niu Y, et al. Impact of Caragana Fabr. plantation on plant community and soil properities of saline-alkali wasteland[J]. Acta Ecologica Sinica, 29(9): 4693-4699. [6] Guo Z S, Shao M A. Dynamics of soil water supply and consumption in artificial Caragana shrub land[J]. Journal of Soil and Water Conservation, 2007, 21(2): 119-123. [7] Liu R T, Yang X G, Chai Y Q, et al. Response of ground-dwelling arthropod guilds to reseeding and cutting in artificial Caragana korshinskii plantations in desert steppe[J]. Acta Prataculturae Sinica, 2013, 22(3): 78-84. [8] Liu R T, Yang X G, Song N P, et al. Soil properties following growing process of artificial forests(caragana microphylla) in desert steppe[J]. Journal of Soil and Water Conservation, 2012, 26(4): 108-112. [9] Zhang Z S, Li X R, Zhang J G, et la. Root growth dynamics of caragana korshinskii using Minirhizotrons[J]. Journal of Plant Ecology, 2006, 30(3): 457-464. [10] Lu R K. Agricultural chemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press, 2000. [11] Bao S D. Agrochemical soil analysis[M]. Beijing: China Agriculture Press, 2000. [12] Han F P, Zheng J Y, Zhang X C. Plant root system distribution and its effect on soil nutrient on slope land converted from farmland in the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, (2): 50-55. [13] Guo Z S. Limit of vegetation rehabilitation for soil and water conservation in semi-arid region of Loess Plateau: A case study of artificial Caragana korshinskii Kom stand[J]. Science of Soil and Water Conservation, 2009, 7(4): 49-54. [14] Bi J Q, Du F, Liang Z S, er al. Research on root system of Caragana korshinskii at different site conditions in the hilly regions of Loess Plateau[J]. Forest Research, 2006, 19(2): 225-230. [15] Lu H B. The effect of restored Caragana korshinskii shrubwood on soil physicochemical properties in Loess area[J]. Ecology and Environment Sciences, 2013, 22(1): 47-49. [16] Shao X Q, Shen Y Y, Wang K. Effects of conservation tillage on the photosynthesis, transpiration and water use efficiency of summer sown Glucine max[J]. Acta Prataculturae Sinica, 2006, 15(6): 82-86. [17] Hu X W, Wang Y R, Wu Y P. Research progress on eco-physiological responses of desert grassland plants to drought conditions[J]. Acta Prataculturae Sinica, 2004, 13(3): 9-15. [18] An S S, Huang Y M. Study on the ameliorate benefits of Caragana korshinskii shrubwood to soil properties in Loess Hilly Area[J]. Scientia Silvae Sinicae, 2006, 42(1): 70-75. [19] Zhang C, Cheng B, Yang Z P, et al. Nutritional characteristics of Caragana jubata shrub and distribution patterns of soil nutrients in Luya Mountain[J]. Chinese Journal of Applied Ecology, 2006, 17(12): 2287-2291. [20] Ren X, Chu G X, Song R Q, et al. Oasis in the Southern Margin of Junggar Basin-Haloxylon desert transitional effects characteristic of "fertile islands"[J]. Chinese Journal of Soil Science, 2010, 41(1): 100-104. [21] Wang Z J, Jiang Q, Pan Z B, et al. Impact of different densities of artificial caragana intermedia forest on soil environmental quality in arid windy desert in Ningxia[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 21(12): 153-157. [22] Qu W D, Chen Y M, Wang L L, et al. Dynamics of soil organic carbon in Caragana microphylla forest and its relationship with environment factors in loess hilly region[J]. Science of Soil and Water Conservation, 2011, 9(4): 72-77. [23] Hoffland E, Findenegg G R, Nelemans J A. Solubilization of rock phosphate by rapeⅡ. Local root exudation of organic acids as a response to P starvation[J]. Plant and Soil, 1989, 113(7): 161-165. 参考文献:[1] 牛西午. 柠条的栽培与利用[M]. 太原: 山西科学教育出版社, 1988.[2] 张薇, 胡跃高, 黄国和, 等. 西北黄土高原柠条种植区土壤微生物多样性分析[J]. 微生物学报, 2007, 47(5): 751-756. [3] Dhillion S S, Zak J C. Microbial dynamics in arid ecosystem-desertification and the potential role of mycorrhizas[J]. Revista Chilena de Historia Natural, 1993, 66: 253-270. [4] 刘任涛, 李学斌, 辛明, 等. 半干旱沙地草场地面节肢动物群落对封育措施的响应[J]. 草业学报, 2012, 21(1): 66-74. [5] 张丽珍, 牛伟, 牛宇, 等. 柠条对盐碱地植被组成及土壤特性的影响[J]. 生态学报, 2009, 29(9): 4693-4699. [6] 郭忠升, 邵明安. 人工柠条林地土壤水分补给和消耗动态变化规律[J]. 水土保持学报, 2007, 21(2): 119-123. [7] 刘任涛, 杨新国, 柴永青, 等. 荒漠草原区柠条林地地面节肢动物功能群对补播牧草和平茬措施的响应[J]. 草业学报, 2013, 22(3): 78-84. [8] 刘任涛, 杨新国, 宋乃平, 等. 荒漠草原区固沙人工柠条林生长过程中土壤性质演变规律[J]. 水土保持学报, 2012, 26(4): 108-112. [9] 张志山, 李新荣, 张景光, 等. 用Minirhizotrons观测柠条根系生长动态[J]. 植物生态学报, 2006, 30(3): 457-464. [10] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. [12] 韩凤朋, 郑纪勇, 张兴昌. 黄土退耕坡地植物根系分布特征及其对土壤养分的影响[J]. 农业工程学报, 2009, (2): 50-55. [13] 郭忠升. 黄土高原半干旱区水土保持植被恢复限度——以人工柠条林为例[J]. 中国水土保持科学, 2009, 7(4): 49-54. [14] 毕建琦, 杜峰, 梁宗锁, 等. 黄土高原丘陵区不同立地条件下柠条根系研究[J]. 林业科学研究, 2006, 19(2): 225-230. [15] 吕海波. 黄土高原退耕柠条林对土壤理化性质的影响研究[J]. 生态环境学报, 2013, 22(1): 47-49. [16] 邵新庆, 沈禹颖, 王堃. 水土保持耕作对夏种大豆光合, 蒸腾及水分利用效率的影响[J]. 草业学报, 2006, 15(6): 82-86. [17] 胡小文, 王彦荣, 武艳培. 荒漠草原植物抗旱生理生态学研究进展[J]. 草业学报, 2004, 13(3): 9-15. [18] 安韶山,黄懿梅. 黄土丘陵区柠条林改善土壤作用的研究[J]. 林业科学, 2006, 42(1): 70-75. [19] 张强,程滨,杨治平,等. 芦芽山鬼箭锦鸡儿灌丛营养特征及土壤养分分布规律[J]. 应用生态学报, 2006, 17(12): 2287-2291. [20] 任雪, 褚贵新, 宋日权, 等. 准噶尔盆地南缘绿洲-荒漠过渡带梭梭“肥岛”效应特征[J]. 土壤通报, 2010, 41(1): 100-104. [21] 王占军, 蒋齐, 潘占兵, 等. 宁夏干旱风沙区不同密度人工柠条林营建对土壤环境质量的影响[J]. 西北农业学报, 2012, 21(12): 153-157. [22] 曲卫东, 陈云明, 王琳琳, 等, 黄土丘陵区柠条人工林土壤有机碳动态及其影响因子[J]. 中国水土保持科学, 2011, 9(4): 72-77. [23] Hoffland E, Findenegg G R, Nelemans J A. Solubilization of rock phosphate by rapeⅡ. Local root exudation of organic acids as a response to P-starvation[J]. Plant and Soil, 1989, 113(7): 161-165. |