Reference:[1]Yu W T, Ma Q, Zhao X, et al. Changes of soil active organic carbon pool under different land use types[J]. Chinese Journal of Ecology, 2007, 26(12): 2013-2016.[2]Lefroy R D B, Blair G, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13 C natural isotope abundance[J]. Plant and Soil, 1993, 155-156: 399-402.[3]Lu L, Li Z P, Che Y P. Effects of different fertilization treatments on soil microbial biomass and enzyme activities in hapli-stagnic anthrosols[J]. Soils, 2006, 38(3): 309-314.[4]Niu W J, Li L Q, Pan G X, et al. Responses of enzyme activities in different particle-size aggregates of paddy soil in Taihu Lake region of China to long-term fertilization NIU Wen-jing,LI Lian-qing,PAN Gen-xing,[J]. Chinese Journa of Applied Ecology, 2009, (9): 2181-2186.[5]Zhang Y J, Yang G W, Liu N, et al. Review of grassland management practices for carbon sequestration[J]. Acta Prataculturae Sinica, 2013, 22(2): 290-299.[6]Ma X X, Wang L L, Li Q H, et al. Effects of long-term fertilization on soil microbial biomass carbon and nitrogen and enzyme activities during maize growing season[J]. Acta Ecologica Sinica, 2012, (17): 5502-5511.[7]Men Q, Hai J B, Yue Z N, et al. Effects on maize field soil enzyme activities and mocrobial biomass of chemical fertilizer reduction[J]. Journal of Northwest A & F University(Natural Science Edition), 2012, (6): 133-140.[8]Ma Z M, Du S P, Wang P, et al. Effects of long-term located fertilization on soil enzymatic activities for wheat-maize intercropping in irrigated desert soils[J]. Acta Agriculturae Nucleatae Sinica, 2011, (4): 796-801.[9]Gu Y, Wu C S, Wang Z M, et al. Effect of different fertilizer treatment on soil microorganism and enzyme activities in soybean[J]. Soybean Science, 2010, (6): 1008-1011.[10]Wang S J, Li Y B, Li R L. Karst rocky desertification: formation background, evolving and comperhensive taming[J]. Quaternary Sciences, 2003, 23(3): 657-666.[11]Lan A J, Zhang B P, Xiong K N. Spatial pattern of the fragile karst environment in southwest Guizhou province[J]. Geographical Research, 2003, 22(6): 733-742.[12]Zhou L, Li B G, Zhou G S. Advances in controlling factors of soil organic carbon[J]. Advance in Earth Sciences, 2005, 20(1): 99-105.[13]Guang S Y. Soil enzymes and research act[M]. Beijing: Agricultural Press, 1986: 120-276.[14]Yao H Y, Huang C Y. Soil microbial ecology and experimental techniques[M]. Beijing: Science Press, 2006. [15]Blair B J, Lefroy R D. Soil carbon fractions based on their degree of oxidation and the developments of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46: 1456-1466.[16]Xu M G, Yu R, Wang B R. Labile organic matter and carbon management indes in red soil under long-term fertilization[J]. Journal Pedologica Sinica, 2006, 43(5): 723-729.[17]Ross D J. Invertase and amylase activities as influenced by clay minerals, soil clay fractions and topsoils under grassland[J]. Soil Biology & Biochemistry, 1983, (15): 287-293.[18]Ren J, Guo J R, Bian X Z, et al. The research progress on soil organic carbon[J]. Soils and Fertilizers Sciences in China, 2009, (6): 1-7, 27.[19]Yin Y F, Cai Z C. Effect of fertilization on equilibrium levels of organic carbon and capacities of soil stabilizing organic carbon for fluvo-aquic soil[J]. Soils, 2006, 38(6): 745-749.[20]Hu C, Qiao Y, Li S L, et al. Vertical distribution and storage of soil organic carbon under long-term fertilization[J]. Chinese Journal of Eco-Agriculture, 2010, (4): 689-692.[21]Yang S, He X Y, Su Y R, et al. Effects of parent rock and land use pattern on soil fertility in Karst region of Northwest Guangxi[J]. Chinese Journal of Applied Ecology, 2010, (6): 1596-1602.[22]Zeng J, Guo T W, Yu X F, et al. Effects of fertilization on soil active on soil active C ang C pool management index[J]. Chinese Journal of Soil Science, 2011, 4(4): 812-815.[23]Shi R, Zhou Y C, Huang C W, et al. Fertilization effect on rhizosnhere environment of Pinus massoniana[J]. Journal of Guizhou Normal University(Natural Sciences), 2011, 29(1): 1-5.[24]Zhu Y, Hou X C, Wu J Y, et al. The effects of nitrogen fertilizer on the contents of TOC, POC, SMBC and WSOC in two kinds of sandy substrates[J]. Acta Prataculturae Sinica, 2013, 22(2): 38-46.[25]Zhang W Z, Zhu T C, Zhang Z Y, et al. The impact of crop stubble on soil microbial activity and microorganism[J]. Soils and Fertilizer, 1993, (5): 12-14. [26]Forman R T T. Some general principles of landscape and regional ecology[J]. Landscape Ecology, 1995, 10(3): 133-142.[27]Cotrufo M F, Ineson P. Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula perwlula Roth. and Picea sitchensis(Bong) Can[J]. Plant and Soil, 1995, 170(2): 267-277.[28]Zeng Y, Zhou L Q, Huang J S, et al. Enzymatic activity of mulberry garden soil using different nitrogen fertilizer treatments[J]. Journal of Southern Agriculture, 2013, 44(2): 253-256.[29]Zhang Y F, Zhong W H, Li Z P, et al. Effects of long-term different fertilization on soil enzyme activity and microbial community functional diversity in paddy soil derived from quaternary red clay[J]. Journal of Ecology and Rural Environment, 2006, 22(4): 39-44.[30]Li F D, Yu Z N, He S H. Agricultural microbiology experimental techniques[M]. Beijing: China Agriculture Press, 1996.[31]Pei H K. Effect of different fertilizer on enzymatic activity of grassland[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2001, 31: 15-16.[32]Wei M, Lou Y H, Luan S N, et al. Effects of fertilization on soil enzyme activities and nutrients absorption in Xanthoceras sorbifolia bunge[J]. Northern Horticulture, 2010, (10): 32-35.参考文献:[1]宇万太, 马强, 赵鑫, 等. 不同土地利用类型下土壤活性有机碳库的变化[J]. 生态学杂志, 2007, 26(12): 2013-2016.[2]Lefroy R D B, Blair G, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155-156: 399-402.[3]路磊, 李忠佩, 车玉萍.不同施肥处理对黄泥土微生物生物量碳氮和酶活性的影响[J]. 土壤, 2006, 38(3): 309-314.[4]牛文静, 李恋卿, 潘根兴, 等. 太湖地区水稻土不同粒级团聚体中酶活性对长期施肥的响应[J]. 应用生态学报, 2009, (9): 2181-2186.[5]张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策[J]. 草业学报, 2013, 22(2): 290-299.[6]马晓霞, 王莲莲, 黎青慧, 等. 长期施肥对玉米生育期土壤微生物量碳氮及酶活性的影响[J]. 生态学报, 2012, (17): 5502-5511.[7]门倩, 海江波, 岳忠娜, 等. 化肥减量对玉米田土壤酶活性及微生物量的影响[J]. 西北农林科技大学学报(自然科学版), 2012, (6): 133-140.[8]马忠明, 杜少平, 王平, 等. 长期定位施肥对小麦玉米间作土壤酶活性的影响[J]. 核农学报, 2011, (4): 796-801.[9]谷岩, 吴春胜, 王振民, 等. 不同施肥处理对大豆根际土壤微生物和酶活性的影响[J]. 大豆科学, 2010, (6): 1008-1011.[10]王世杰, 李阳兵, 李瑞玲. 喀斯特石漠化的形成背景、演化与治理[J]. 第四纪研究, 2003, 23(3): 657-666.[11]兰安军, 张百平, 熊康宁. 黔西南脆弱喀斯特生态环境空间格局分析[J]. 地理研究, 2003, 22(6): 733-742.[12]周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105.[13]关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 120-276.[14]姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术[M]. 北京: 科学出版社, 2006. [15]Blair B J, Lefroy R D. Soil carbon fractions based on their degree of oxidation and the developments of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46: 1456-1466.[16]徐明岗, 于荣, 王伯仁. 长期不同施肥下红壤活性有机质与碳库管理指数变化[J]. 土壤学报, 2006, 43(5): 723-729.[17]Ross D J. Invertase and amylase activities as influenced by clay minerals, soil- clay fractions and topsoils under grassland[J]. Soil Biology & Biochemistry, 1983, (15): 287-293.[18]任军, 郭金瑞, 边秀芝, 等. 土壤有机碳研究进展[J]. 中国土壤与肥料, 2009, (6): 1-7, 27.[19]尹云锋, 蔡祖聪.不同施肥措施对潮土有机碳平衡及固碳潜力的影响[J]. 土壤, 2006, 38(6): 745-749.[20]胡诚, 乔艳, 李双来, 等. 长期不同施肥方式下土壤有机碳的垂直分布及碳储量[J]. 中国生态农业学报, 2010, (4): 689-692.[21]杨珊, 何寻阳, 苏以荣, 等. 岩性和土地利用方式对桂西北喀斯特土壤肥力的影响[J]. 应用生态学报, 2010, (6): 1596-1602.[22]曾骏, 郭天文, 于显枫, 等.长期施肥对土壤活性有机碳和碳库管理指数的影响[J]. 土壤通报, 2011, 4(4): 812-815.[23]施蓉, 周运超, 黄传玮, 等. 施肥对中龄马尾松根际环境的影响[J]. 贵州师范大学学报(自然科学版), 2011, 29(1): 1-5.[24]朱毅, 侯新村, 武菊英, 等. 氮肥对两种沙性栽培基质中有机碳类物质含量的影响[J]. 草业学报, 2013, 22(2): 38-46.[25]张为政, 祝廷成, 张镇媛, 等. 作物茬口对土壤酶活性和微生物的影响[J]. 土壤肥料, 1993, (5): 12-14. [26]Forman R T T. Some general principles of landscape and regional ecology[J]. Landscape Ecology, 1995, 10(3): 133-142.[27]Cotrufo M F, Ineson P. Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula perwlula Roth. and Picea sitchensis (Bong) Can[J]. Plant and Soil, 1995, 170(2): 267-277.[28]曾艳, 周柳强, 黄金生, 等. 不同氮肥处理对桑园土壤酶活性的影响[J]. 南方农业学报, 2013, 44(2): 253-256.[29]张逸飞, 钟文辉, 李忠佩, 等. 长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响[J]. 生态与农村环境学报, 2006, 22(4): 39-44.[30]李阜棣, 喻子牛, 何绍江. 农业微生物实验技术[M]. 北京: 中国农业出版社, 1996.[31]裴海昆. 不同施肥量对天然草地土壤酶活性的影响[J]. 青海畜牧兽医杂志, 2001, 31: 15-16.[32]魏猛, 娄燕宏, 栾森年, 等. 施肥对文冠果养分吸收及土壤酶活性的影响[J]. 北方园艺, 2010, (10): 32-35. |