草业学报 ›› 2014, Vol. 23 ›› Issue (1): 185-191.DOI: 10.11686/cyxb20140122
赵哈林1,曲浩1,周瑞莲2,云建英1,李瑾1,王进2
收稿日期:
2013-02-22
出版日期:
2014-02-20
发布日期:
2014-02-20
作者简介:
赵哈林(1954-),男,安徽马鞍山人,研究员。E-mail:resdiv@lzb.ac.cn
基金资助:
ZHAO Ha-lin1,QU Hao1,ZHOU Rui-lian2,YUN Jian-ying1,LI Jin1,WANG Jin2
Received:
2013-02-22
Online:
2014-02-20
Published:
2014-02-20
摘要: 差巴嘎蒿属于沙生半灌木,小叶锦鸡儿属于非沙生灌木,二者均为内蒙古东部几个沙地中分布最广的灌木种。为比较两种灌木耐沙埋能力及其生理响应差异,2010-2011年在内蒙古科尔沁沙地研究了不同深度沙埋处理下两种灌木幼苗的存活率、株高、渗透调节物质含量、保护酶活性和膜透性变化。结果表明, 1)差巴嘎蒿较小叶锦鸡儿具有更强的耐沙埋能力,前者在沙埋深度达到株高200%时仍有部分幼苗存活,后者在沙埋深度为其株高100%时即已全部死亡;2)沙埋深度为株高25%时,两种灌木高生长均未受到明显影响,当沙埋深度达到株高50%时,两种灌木的高生长均受到抑制;3)当沙埋深度由株高25%增至75%以后,差巴嘎蒿没有显示出水分胁迫,其MDA含量下降,膜透性没有明显变化,而小叶锦鸡儿在沙埋深度为株高50%时即已显示出水分胁迫,MDA含量明显增加,但膜透性没有发生明显变化;4)沙埋深度为株高75%~100%时,差巴嘎蒿有两种酶活性显著增强,起到了共同防止膜质过氧化作用,而小叶锦鸡儿只有一种酶活性显著增强;5)沙埋胁迫下,差巴嘎蒿脯氨酸发挥了一定渗透调节作用,小叶锦鸡儿的脯氨酸和可溶性糖均未有效发挥渗透调节作用;6)差巴嘎蒿之所以具有较强的耐沙埋能力,一个重要原因是沙埋后其保护酶活性和渗透调节物质含量增加幅度大,有效地减轻了细胞膜损伤。
中图分类号:
赵哈林,曲浩,周瑞莲,云建英,李瑾,王进. 沙埋对两种灌木生长影响及其生理响应差异[J]. 草业学报, 2014, 23(1): 185-191.
ZHAO Ha-lin,QU Hao,ZHOU Rui-lian,YUN Jian-ying,LI Jin,WANG Jin. Effects of sand burial on growth of two shrub species and their differences in physiological responses[J]. Acta Prataculturae Sinica, 2014, 23(1): 185-191.
Reference: [1]Zhao H L, Desert Ecology[M]. Bingjing: Science Press, 2013. [2]Benvenuti S, Macchia M, Miele S. Light, temperature and burial depth effects on Rumex obtussifolius seed germination and emergence[J]. Weed Research, 2001, 41: 177-186. [3]Danin A. Plants of Desert Dunes[M]. New York: Springer Verlag, 1996. [4] Wang J, Zhou R L, Zhao H L, et al. Growth and physiological adaptation of Messerschmidia sibirica to sand burial on coastal sandy[J]. Acta Ecologica Sinica, 2012, 32( 14): 4291-4299. [5]Li Q Y, Zhao W Z. Seedling emergence and growth responses of five desert species to sand burial depth[J]. Acta Ecologica Sinica, 2006, 26(6): 1802-1809. [6]Li W T, Zhang C, Wang F, et al. Effects of sand burial and water supply on seedlings growth of two dominant psammophytes in Mu Us sandland[J]. Acta Ecologica Sinica, 2010, 30(5): 1192-1199. [7]Yang H L, Cao Z P, Dong M, et al. Effects of sand burying on caryopsis germination and seedling growth of Bromus inermis Leyss[J]. Chinese Journal of Applied Ecology, Nov. 2007, 18(11): 2438-2443. [8]He Y H, Zhao H L, Zhao X Y, et al. Effects of dieffrent sand burial depths on growth and biomass allocation in Caragana microphylla seedlings[J]. Arid Land Geography, 2008, 31(5): 701-706. [9]Mi Z Y, Zhou D D, Wu Y D. Influence of wind erosion and sand bury on the morphological charactristics of Salix psammophila C.Wang et Ch.Y.Yang[J]. Inner Mongolia Forestry Science & Technology, 2005,(1): 9-13. [10]Xu B, Liu X E , Sun Z Y, et al. Study on the anaotmical properties and variation of sand covered poplar grown in the beaches of Yangtze River[J]. Forest Research. 2005, 18(6): 738-742. [11]Zhao H L, Zhao X Y, Zhang T H, et al. Adaptation strategies and vegetation recovery mechanism in the desertification process[M]. Beijing: Science Press, 2004. [12]Zhang Z L, Qu W J. Plant Physiology Laboratory Manual[M]. Bingjing: Higher Education Press, 2003. [13]Wang W J, He D H, Tang X Q, et al. Effects of different temperature and sand burial depths on seed germination and seedling growth of Sophora Moorcroftiana[J]. Journal of Desert Research. 2011, 31(6): 1437-1442. [14]Liu S E, Feng Z W, Zhao D C. Several issues of principle concerning China vegetation zoning[J]. Acta Botanica Sinica, 1959, 8(2): 87-105. [15]Zhang Y F, Yin B. Influences of salt and alkali mixed stresses on antioxidative activity and MDA content of Medicago sativa at seedling stage[J]. Acta Prataculturae Sinica, 2009, 18(1): 46-50. [16]Song J Z, Li P P, Fu W G. Effect of water stress and rewatering on the physiological and biochemical characteristics of Phalaris arundinacea[J]. Acta Prataculturae Sinica, 2012, 21(2): 63-69. [17]Du R F, Hao W F, Wang L F. Dynamic responses on anti-oxidative defense system and lipid peroxidation of Lespedeza davurica to drought stress and re-watering[J]. Acta Prataculturae Sinica, 2012, 21(2): 51-56. [18]Bai L P, Sui F G, Ge T D, et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16: 326-332. [19]Fan R P, Zhou Q, Zhou B, et al. Effects of salinization stress on growth and the antioxidant system of tall fescue[J]. Acta Prataculturae Sinica, 2012, 21(1): 112-117. [20]Lu Y, Li X R, He M Z, et al. Effects of Ni and Cu on antioxidative enzymes in Peganum harmala[J]. Acta Prataculturae Sinica, 2012, 21(3): 147-155. [21]Jouili H, Ferjani E. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess[J]. Computational Rend Biology, 2003, 326: 639-644. [22]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sciences, 2002, 9: 405-410. [23]Qayyum A, Razzaq A, Ahmad M, et al. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat(Triticum aestivum L.) genotypes[J]. Africa Journal Biotechnology, 2011, 10: 14038-14045. [24]Sundar D, Perianayaguy B R, Ramachandra R A. Localization of antioxidant enzymes in the cellular compartments of sorghum leaves[J].Plant Growth Regulation, 2004, 44(2): 157-163. [25]Pagter M, Bragato C, Brix H. Tolerance and physiological responses of Phragmites australis to water deficit[J]. Aquatic Botany, 2005, 81: 285-299. 参考文献: [1]赵哈林. 沙漠生态学[M]. 北京: 科学出版社, 2013. [2]Benvenuti S, Macchia M, Miele S. Light, temperature and burial depth effects on Rumex obtussifolius seed germination and emergence[J]. Weed Research, 2001, 41: 177-186. [3]Danin A. Plants of Desert Dunes[M]. New York: Springer-Verlag, 1996. [4]王进, 周瑞莲, 赵哈林, 等. 海滨沙地砂引草对沙埋的生长和生理适应对策[J]. 生态学报, 2012, 32(14): 4291-4299. [5]李秋艳, 赵文智. 五种荒漠植物幼苗出土及生长对沙埋深度的响应[J]. 生态学报, 2006, 26(6): 1802-1809. [6]李文婷, 张超, 王飞, 等. 沙埋与供水对毛乌素沙地两种重要沙生植物幼苗生长的影响[J].生态学报, 2010, 30(5): 1192-1199. [7]杨慧玲, 曹志平, 董鸣, 等. 沙埋对无芒雀麦种子萌发和幼苗生长的影响[J]. 应用生态学报, 2007, 18(11): 2438-2443. [8]何玉惠, 赵哈林, 赵学勇, 等. 沙埋对小叶锦鸡儿幼苗生长和生物量分配的影响[J]. 干旱区地理, 2008, 31(5): 701-706. [9]米志英, 周丹丹, 吴亚东. 风蚀沙埋对沙柳形态特征的影响[J]. 内蒙古林业科技, 2005, (1): 9-13. [10]徐斌, 刘杏娥, 孙主义, 等. 长江滩地沙埋杨树木材解剖性质及其变异的研究[J]. 林业科学研究, 2005, 18(6): 738-742. [11]赵哈林, 赵学勇, 张铜会, 等. 沙漠化过程中植物的适应对策和植被恢复机理[M]. 北京: 科学出版社, 2004. [12]张志良, 瞿伟菁.植物生理实验指南[M]. 北京: 高等教育出版社, 2003. [13]王文娟, 贺达汉, 唐小琴, 等. 不同温度和沙埋深度对砂生槐种子萌发及幼苗生长的影响[J]. 中国沙漠, 2011, 31(6): 1437-1442. [14]刘慎谔, 冯宗炜, 赵大昌.关于中国植被区划的若干原则问题[J]. 植物学报, 1959, 8(2): 87-105. [15]张永峰,殷波.混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J].草业学报, 2009, 18(1): 46-50. [16]宋家壮, 李萍萍, 付为国. 水分胁迫及复水对虉草生理生化特性的影响[J]. 草业学报, 2012, 21(2): 62-69. [17]杜润峰, 郝文芳, 王龙飞. 达乌里胡枝子抗氧化保护系统及膜脂过氧化对干旱胁迫及复水的动态响应[J]. 草业学报, 2012, 21(2): 51-56. [18]Bai L P, Sui F G, Ge T D,et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16: 326-332. [19]樊瑞苹, 周琴, 周波, 等. 盐胁迫对高羊茅生长及抗氧化系统的影响[J]. 草业学报, 2012, 21(1): 112-117. [20]鲁艳, 李新荣, 何明珠, 等. Ni和Cu胁迫对骆驼蓬抗氧化酶活性的影响[J]. 草业学报, 2012, 21(3): 147-155. [21]Jouili H, Ferjani E. Changes in antioxidant and lignifying enzyme activities in sunflower roots(Helianthus annuus L.) stressed with copper excess[J]. Computational Rend Biology, 2003, 326: 639-644. [22]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sciences, 2002, 9: 405-410. [23]Qayyum A, Razzaq A, Ahmad M,et al. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat(Triticum aestivum L.) genotypes[J]. Africa Journal Biotechnology, 2011, 10: 14038-14045. [24]Sundar D, Perianayaguy B R, Ramachandra R A. Localization of antioxidant enzymes in the cellular compartments of sorghum leaves[J].Plant Growth Regulation, 2004, 44(2): 157-163. [25]Pagter M, Bragato C, Brix H. Tolerance and physiological responses of Phragmites australis to water deficit[J]. Aquatic Botany, 2005, 81: 285-299. |
[1] | 周欣,左小安,赵学勇,王少昆,罗永清,岳祥飞,张腊梅. 半干旱沙地生境变化对植物地上生物量及其碳、氮储量的影响[J]. 草业学报, 2014, 23(6): 36-44. |
[2] | 郭玉朋. 植物光呼吸途径研究进展[J]. 草业学报, 2014, 23(4): 322-329. |
[3] | 鲁艳,雷加强,曾凡江,徐立帅,彭守兰,刘国军. NaCl处理对梭梭生长及生理生态特征的影响[J]. 草业学报, 2014, 23(3): 152-159. |
[4] | 王丹,龚春霞,苟亚峰,周路,朱军保,高剑峰. 塔克拉玛干沙漠生物结皮中几种藻类的系统发育分析[J]. 草业学报, 2014, 23(3): 97-103. |
[5] | 段晓凤,张磊,卫建国,朱永宁,杨洋,金飞. 宁夏盐池牧草返青期预测及生产潜力初步分析[J]. 草业学报, 2014, 23(2): 1-8. |
[6] | 陶冶,张元明. 准噶尔荒漠6种类短命植物生物量分配与异速生长关系[J]. 草业学报, 2014, 23(2): 38-48. |
[7] | 任志国, 陈亚鹏,李卫红,刘树宝. 地下水埋深对塔里木河下游建群种植物叶片δ13C值的影响[J]. 草业学报, 2014, 23(2): 76-82. |
[8] | 南丽丽,师尚礼,张建华. 不同根型苜蓿根系发育能力研究[J]. 草业学报, 2014, 23(2): 117-124. |
[9] | 赵财,周海燕,柴强,黄高宝,刘辉娟,朱静. 不同供水水平下丁香酚和间作蚕豆对小麦根系生长的互作效应[J]. 草业学报, 2014, 23(2): 133-139. |
[10] | 彭岚清,李欣勇,齐晓,岳彦红,范树高,李树成,王彦荣. 紫花苜蓿品种根部特性与持久性和生物量的关系[J]. 草业学报, 2014, 23(2): 147-153. |
[11] | 李辉,康健,赵耕毛,尹晓明,梁明祥. 盐胁迫对菊芋干物质和糖分积累分配的影响[J]. 草业学报, 2014, 23(2): 160-170. |
[12] | 张怀山,赵桂琴,栗孟飞,夏曾润,王春梅. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答[J]. 草业学报, 2014, 23(2): 180-188. |
[13] | 王若梦,董宽虎,李钰莹,李晨,杨静芳. 外源植物激素对NaCl胁迫下苦马豆苗期脯氨酸代谢的影响[J]. 草业学报, 2014, 23(2): 189-195. |
[14] | 张金政,张起源,孙国峰,何卿,李晓东,刘洪章. 干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014, 23(1): 167-176. |
[15] | 张佳宁,刘坤. 植物调节萌发时间和萌发地点的机制[J]. 草业学报, 2014, 23(1): 328-338. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||