草业学报 ›› 2014, Vol. 23 ›› Issue (1): 328-338.DOI: 10.11686/cyxb20140139
张佳宁1,2,刘坤2*
收稿日期:
2013-07-28
出版日期:
2014-02-20
发布日期:
2014-02-20
通讯作者:
E-mail:liukun@lzu.edu.cn
作者简介:
张佳宁(1982-),女,河北涉县人,助理研究员,硕士。E-mail:271523969@qq.com
基金资助:
ZHANG Jia-ning1,2,LIU Kun2
Received:
2013-07-28
Online:
2014-02-20
Published:
2014-02-20
摘要: 种子萌发是植物生活史中的关键过渡阶段(从种子到幼苗),它决定着植物萌发后所面临的生存环境和自然选择压力。所以,选择合适的萌发时间和萌发地点将会对植物的存活、竞争以及繁殖产生重要意义。温度、土壤湿度、火灾以及光周期是影响植物种子萌发季节的最重要的环境因子。这些因子能够直接调节种子萌发季节或者通过影响种子的休眠状态进而调节种子的萌发季节,确保种子萌发发生在最有利于幼苗建植的季节。光(包括光通量和光谱特征)、日温幅以及硝酸盐是调节种子萌发地点的环境因子。这些因子能够将萌发限制在土壤表面以及植被斑块中,这有利于植物的出苗和幼苗建植。脱落酸(ABA)和赤霉素(GA)是影响种子休眠和萌发的2种最主要的激素。ABA的作用是诱导休眠,抑制萌发,GA的作用是去除休眠,促进萌发。在分子水平上,环境因子通过调节控制ABA和GA合成、分解以及信号传导的基因的表达来控制植物种子的萌发。
中图分类号:
张佳宁,刘坤. 植物调节萌发时间和萌发地点的机制[J]. 草业学报, 2014, 23(1): 328-338.
ZHANG Jia-ning,LIU Kun. Mechanisms for plants detecting the optimum time and place to germinate[J]. Acta Prataculturae Sinica, 2014, 23(1): 328-338.
Reference:[1]Zong W J, Liu K, Bu H Y, et al. The mode of seed size variation and the effects of seed size on fifty-one species of composite plants in a alpine meadow[J]. Journal of Lanzhou University (Natural Sciences), 2006, 42: 52-55.[2]Zhang D Y. Plant Life History Evolution and Breeding Ecology[M]. Beijing: Science Press, 2004.[3]Cheplick G P. Do seed germination patterns in cleistogamous annual grasses reduce the risk of sibling competition[J]. Journal of Ecology, 1996, 84: 247-255.[4]Lu W H, Wan J J, Yang J J, et al. Review of endozoochory of plant seeds by herbivores[J]. Acta Prataculturae Sinica, 2013, 22(3): 306-313.[5]Lu J H, Lü X, Wu L, et al. Germination responses of three medicinal licorices to saline environments and their suitable ecological regions[J]. Acta Prataculturae Sinica, 2013, 22(2): 195-202.[6]Lu Y M, Su C Q, Li H F. Effects of different salts stress on seed germination and seedling growth of Trifolium repens[J]. Acta Prataculturae Sinica, 2013, 22(4): 123-129.[7]Baskin J M, Baskin C C. A classification system for seed dormancy[J]. Seed Science Research, 2004, 14: 1-16.[8]Vleeshouwers L M, Bouwmeester H J, Karssen C M. Redefining seed dormancy: an attempt to integrate physiology and ecology[J]. Journal of Ecology, 1995, 83: 1031-1037.[9]Baskin C C, Baskin J M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination[M]. San Diego: Academic Press, 1998.[10]Liu K, Baskin J M, Baskin C C, et al. Effect of storage conditions on germination of 489 species from high elevation grassland of the eastern Tibet Plateau and implications for climate change[J]. American Journal of Botany, 2011, 98: 12-19.[11]Washitani I, Masuda M. A comparative study of the germination characteristics of seeds from a moist tall grassland community[J]. Functional Ecology, 1990, 4: 543-457.[12]Grime J P, Mason G, Curtis A V, et al. A comparative study of germination characteristics in a local flora[J]. Journal of Ecology, 1981, 69: 1017-1059.[13]Schütz W. Are germination strategies important for the ability of cespitose wetland sedges (Carex) to grow in forests[J]. Canadian Journal of Botany, 1997, 75: 1692-1699.[14]Fenner M, Thompson K. The Ecology of Seeds[M]. Cambridge: Cambridge University Press, 2005.[15]Simon E W, Minchin A, McMenamin M M, et al. The low temperature limit for seed germination[J]. New Phytologist, 1976, 77: 301-311.[16]Crawford R M M. Studies in Plant Survival[M]. Oxford: Blackwell, 1989.[17]Thanos C A, Georghiou K, Skarou F. Glaucium flavumseed germination: an ecophysiological approach[J]. Annals of Botany, 1989, 63: 121-130. [18]Oberbauer S, Miller P C. Effect of water potential on seed germination[J]. Holarctic Ecology, 1982, 5: 218-220.[19]Singh P, Ibrahim H M, Flury M, et al. Critical water potentials for germination of wheat cultivars in the dryland Northwest USA[J]. Seed Science Research, 2013, 23: 189-198.[20]Parsons F R. Incidence and ecology of very fast germination[J]. Seed Science Research, 2012, 22: 161-167.[21]Liu K, Baskin J M, Baskin C C, et al. Very fast-germinating seeds of desert species are cryptoviparous like[J]. Seed Science Research, 2013, 23: 163-167.[22]Mariko S, Kachi N, Ishikawa S, et al. Germination ecology of coastal plants in relation to salt environment[J]. Ecological Research, 1992, 7: 225-233.[23]Baldwin A H, Mckee K L, Mendelssohn I A. The influence of vegetation, salinity, and inundation on seed banks of oligohaline coastal marshes[J]. American Journal of Botany, 1996, 83: 470-479.[24]Williams K, Meads M V, Sauerbrey D A. The roles of seedling salt tolerance and resprouting in forest zonation on the west coast of Florida, USA[J]. American Journal of Botany, 1998, 85: 1745-1752.[25]Isikawa S. Light sensitivity against germination. I. Photoperiodism in seeds[J]. Botanical Magazine Tokyo, 1954, 67: 51-56.[26]Cumming B G. The dependence of germination on photoperiod, light quality, and temperature in Chenopodiumspp[J]. Canadian Journal of Botany, 1963, 41: 1211-1233.[27]Densmore R V. Effect of day length on germination of seeds collected in Alaska[J]. American Journal of Botany, 1997, 84: 274-278.[28]Zhao D L. Effects of light on seed dormancy and germination[J]. Bulletin of Biology, 1995, 30: 24-25.[29]Black M, Wareing P F. Growth studies in woody species. VII. Photoperiodic control of germination in Betula pubescens Ehrh[J]. Physiologia Plantarum, 1955, 8: 300-316.[30]Stearns F, Olsen J. Interactions of photoperiod and temperature affecting seed germination in Tsuga canadensis[J]. American Journal of Botany, 1958, 45: 53-58.[31]Baskin J M, Baskin C C. Effect of photoperiod on germination of Cyperus inflexusseeds[J]. Botanical Gazette, 1976, 137: 269-273.[32]Bliss D, Smith H. Penetration of light into soil and its role in the control of seed germination[J]. Plant, Cell and Environment, 1985, 8: 475-483.[33]Tester M, Morris C. The penetration of light through soil[J]. Plant, Cell & Environment, 1987, 10: 281-286.[34]Wesson G, Wareing P F. The induction of light sensitivity in weed seeds by burial[J]. Journal of Experimental Botany, 1969, 20: 414-425.[35]Milberg P, Andersson L. Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species[J]. Canadian Journal of Botany, 1997, 75: 1998-2004.[36]Scopel A L, Ballaré C L, Sánchez R A. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations[J]. Plant, Cell and Environment, 1991, 14: 501-508.[37]Górski T, Górska K. Inhibitory effects of full daylight on the germination of Lactuca sativaL[J]. Planta, 1979, 144: 121-124.[38]Pons T L. Seed responses to light[A]. Seeds: The Ecology of Regeneration in Plant Communities[M]. Wallingford: CABI Publishing, 2000: 237-260.[39]Taylorson R B, Borthwick H A. Light filtration by foliar canopies: significance for light controlled weed seed germination[J]. Weed Science, 1969, 17: 48-51.[40]Fenner M. The induction of a light requirement in Bidens pilosaseeds by leaf canopy shade[J]. New Phytologist, 1980, 84: 103-106.[41]Silvertown J W. Leaf canopy-induced seed dormancy in a grassland flora[J]. New Phytologist, 1980, 85: 109-118.[42]Górski T. Germination of seeds in the shadow of plants[J]. Physiologia Plantarum, 1975, 34: 342-346.[43]Górski T, Górska K, Nowicki J. Germination of seeds of various herbaceous species under leaf canopy[J]. Flora, 1977, 166: 249-259.[44]Górski T, Górska K, Rybicki J. Studies on the germination of seeds under leaf canopy[J]. Flora, 1978, 167: 289-299.[45]Ballard L A T. Physical barriers to germination[J]. Seed Science and Technology, 1981, 1: 285-303.[46]Keeley J E. Seed germination and life history syndromes in the California chaparral[J]. Botanical Review, 1991, 57: 81-116.[47]Keeley J E. Seed germination patterns in fire-prone Mediterranean-climate regions[A]. In: Arroyo M T K, Zedler P H, Fox M D. Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia[M]. San Diego: Academic Press, 1995: 239-273.[48]Kilian D, Cowling R M. Comparative seed biology and co-existence of two fynbos shrub species[J]. Journal of Vegetation Science, 1992, 3: 637-646.[49]Keeley J E, Bond W J. Convergent seed germination in South African fynbos and Californian chaparral[J]. Plant Ecology, 1997, 133: 153-167.[50]Herranz J M, Gerrandis P, Martinez-Sanchez J J. Influence of heat on seed germination of seven Mediterranean Leguminosae species[J]. Plant Ecology, 1998, 136: 95-103.[51]Baskin J M, Baskin C C. New approaches to the study of the evolution of physical and physiological dormancy, the two most common classes of seed dormancy on earth[A]. In: Nicolas G, Bradford K J, Come D, et al. The Biology of Seeds: Recent Research Advances[M]. Wallingford: CABI Publishing, 2003: 371-380.[52]Brown N A C. Promotion of germination of fynbos seeds by plant derived smoke[J]. New Phytologist, 1993, 123: 575-583.[53]Keeley J E, Fotheringham C J. Smoke induced seed germination of California chaparral[J]. Ecology, 1998, 79: 2320-2336.[54]Roche S, Dixon K W, Pate J S. Seed ageing and smoke: partner cues in the amelioration of seed dormancy in selected Australian native species[J]. Australian Journal of Botany, 1997, 45: 783-815.[55]Tieu A, Dixon K W, Meney K A, et al. Interaction of soil burial and smoke on germination patterns in seeds of selected Australian native plants[J]. Seed Science Research, 2001, 11: 69-76.[56]Van de Venter H A, Esterhuizen A D. The effects of factors associated with fire on seed germination of Erica sessilifloraand E. hebgecalys (Ericaceae)[J]. South African Journal of Botany, 1988, 54: 301-304.[57]Flematti G R, Ghisalberti E L, Dixon K W, et al. A compound from smoke that promotes seed germination[J]. Science, 2004, 305: 977.[58]Malakoff D A. Nitrogen oxide pollution may spark seeds growth[J].Science, 1997, 276: 1199.[59]Downes K S, Lamont B B, Light M E, et al. The fire ephemeral Tersonia cyathiflora(Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one[J]. Annuals of Botany, 2010, 106: 381-384.[60]Liu K, Baskin J M, Baskin C C, et al. Effect of diurnal fluctuating versus constant temperatures on germination of 445 species from the eastern Tibet Plateau[J]. PLoS ONE, 2013, 8: e69364.[61]Thompson K, Grime J P, Mason G. Seed germination in response to diurnal fluctuations of temperature[J]. Nature, 1997, 267: 147-149.[62]Benech Arnold R L, Ghersa C M, Sanchez R A, et al. The role of fluctuating temperatures in the germination and establishment of Sorghum halepense(L.) Pers. Regulation of germination under leaf canopies[J]. Functonal Ecology, 1988, 3: 311-318.[63]Ren J, Tao L, Liu X M. Effect of sand burial depth on seed germination and seedling emergence of Calligonum L. species[J]. Journal of Arid Environment, 2002, 51: 603-611.[64]Chauhan B S, Gill G, Preston C. Seed germination and seedling emergence of threehorn bedstraw (Galium tricornutum)[J]. Weed Science, 2006, 54: 867-872.[65]Ghersa C M, Benech Arnold R L, Martinez-Ghersa M A. The role of fluctuating temperatures in germination and establishment of Sorghum halepense. Regulation of germination at increasing depths[J]. Functional Ecology, 1992, 6: 460-468.[66]Thompson K, Grime J P. A comparative study of germination responses to diurnally-fluctuating temperatures[J]. Journal of Applied Ecology, 1983, 20: 141-156.[67]Pons T L, Schrder H F J M. Significance of temperature fluctuation and oxygen concentration for germination of the rice field weeds Fimbristylis littoralisand Scirpus juncoides[J]. Oecologia, 1986, 68: 315-319.[68]Steinbauer G P, Grigsby B. Interaction of temperature, light and moistening agent in the germination of weed seeds[J]. Weeds, 1957, 5: 157.[69]Pons T L. Breaking of seed dormancy by nitrate as a gap detection mechanism[J]. Annals of Botany, 1989, 63: 139-143.[70]Hintikka V. Germination ecology of Galeopsis bifida(Lamiaceae) as a pioneer species in forest succession[J]. Silva Fennica, 1987, 21: 301-313.[71]Scharenbroch B C, Bockheim J G. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests[J]. Plant Soil, 2007, 294: 219-233.[72]Toole V T. Germination requirements of the seed of some introduced and native range grasses[J]. Proceeding Association Official Seed Analysts, 1938, 30: 227-243.[73]Hilton J R. The influence of light and potassium nitrate on the dormancy and germination of Avena fatua L. (wild oat) seed and its ecological significance[J]. New Phytologist, 1984, 96: 31-34.[74]Bell D T, King L A, Plummer J A. Ecophysiological effects of light quality and nitrate on seed germination in species from Western Australia[J]. Australian Journal of Ecology, 1999, 24: 2-10.[75]Saini H S, Bassi P S, Spencer M S. Seed germination in Chnopodium album L.: Further evidence for dependence of the effects of growth regulators on nitrate availability[J]. Plant Cell Environment, 1985, 8: 707-711.[76]Carmona R, Murdoch A J. Interactions of temperature and dormancy-relieving compounds on the germination of weed seeds[J]. Seed Science Research, 1995, 5: 227-236.[77]Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171: 501-523.[78]Donohue K, Dorn L, Griffith C, et al. Environmental and genetic influences on the germination of Arabidopsis thalianain the field[J]. Evolution, 2005, 59: 740-757.[79]Footitt S, Douterelo-Soler I, Clay H, et al. Dormancy cycling in Arabidopsisseeds is controlled by seasonally distinct hormone signaling pathways[J]. Proceedings of National Academy of Sciences of the United States of America, 2011, 108: 20236-20241.[80]Footitt S, Huang Z, Clay H, et al. Temperature, light and nitrate sensing coordinate Arabidopsisseed dormancy cycling, resulting in winter and summer annual phenotypes[J].The Plant Journal, 2013, 74: 1003-1015.[81]Cadman C S C, Toorop P E, Hilhorst H W M, et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism[J]. The Plant Journal, 2006, 46: 805-822.[82]Oh E, Kang H, Yamaguchi S, et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis[J]. Plant Cell, 2009, 21:403-419.[83]Matakiadis T, Alboresi A, Jikumaru Y, et al. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy[J]. Plant Physiology, 2009, 149: 949-960.参考文献:[1]宗文杰,刘坤,卜海燕,等. 高寒草甸51种菊科植物种子大小变异及其对种子萌发的影响研究[J]. 兰州大学学报(自然科学版), 2006, 42: 52-55.[2]张大勇. 植物生活史进化与繁殖生态学[M].北京: 科学出版社, 2004.[3]Cheplick G P. Do seed germination patterns in cleistogamous annual grasses reduce the risk of sibling competition[J]. Journal of Ecology, 1996, 84: 247-255.[4]鲁为华,万娟娟,杨洁晶,等. 草食动物对植物种子的消化道传播研究进展[J]. 草业学报,2013, 22(3):306-313.[5]陆嘉惠,吕新,吴玲,等. 三种药用甘草种子对盐渍环境的萌发响应及其适宜生态种植区[J]. 草业学报,2013, 22(2):195-202.[6]卢艳敏,苏长青,李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响[J]. 草业学报,2013, 22(4):123-129.[7]Baskin J M, Baskin C C. A classification system for seed dormancy[J]. Seed Science Research, 2004, 14: 1-16.[8]Vleeshouwers L M, Bouwmeester H J, Karssen C M. Redefining seed dormancy: an attempt to integrate physiology and ecology[J]. Journal of Ecology, 1995, 83: 1031-1037.[9]Baskin C C, Baskin J M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination[M]. San Diego: Academic Press, 1998.[10]Liu K, Baskin J M, Baskin C C,et al. Effect of storage conditions on germination of 489 species from high elevation grassland of the eastern Tibet Plateau and implications for climate change[J]. American Journal of Botany, 2011, 98: 12-19.[11]Washitani I, Masuda M. A comparative study of the germination characteristics of seeds from a moist tall grassland community[J]. Functional Ecology, 1990, 4: 543-457.[12]Grime J P, Mason G, Curtis A V,et al. A comparative study of germination characteristics in a local flora[J]. Journal of Ecology, 1981, 69: 1017-1059.[13]Schütz W. Are germination strategies important for the ability of cespitose wetland sedges(Carex) to grow in forests[J]. Canadian Journal of Botany, 1997, 75: 1692-1699.[14]Fenner M, Thompson K. The Ecology of Seeds[M]. Cambridge: Cambridge University Press, 2005.[15]Simon E W, Minchin A, McMenamin M M,et al. The low temperature limit for seed germination[J]. New Phytologist, 1976, 77: 301-311.[16]Crawford R M M. Studies in Plant Survival[M]. Oxford: Blackwell, 1989.[17]Thanos C A, Georghiou K, Skarou F. Glaucium flavum seed germination: an ecophysiological approach[J]. Annals of Botany, 1989, 63: 121-130. [18]Oberbauer S, Miller P C. Effect of water potential on seed germination[J]. Holarctic Ecology, 1982, 5: 218-220.[19]Singh P, Ibrahim H M, Flury M,et al. Critical water potentials for germination of wheat cultivars in the dryland Northwest USA[J]. Seed Science Research, 2013, 23: 189-198.[20]Parsons F R. Incidence and ecology of very fast germination[J]. Seed Science Research, 2012, 22: 161-167.[21]Liu K, Baskin J M, Baskin C C,et al. Very fast-germinating seeds of desert species are cryptoviparous-like[J]. Seed Science Research, 2013, 23: 163-167.[22]Mariko S, Kachi N, Ishikawa S,et al. Germination ecology of coastal plants in relation to salt environment[J]. Ecological Research, 1992, 7: 225-233.[23]Baldwin A H, Mckee K L, Mendelssohn I A. The influence of vegetation, salinity, and inundation on seed banks of oligohaline coastal marshes[J]. American Journal of Botany, 1996, 83: 470-479.[24]Williams K, Meads M V, Sauerbrey D A. The roles of seedling salt tolerance and resprouting in forest zonation on the west coast of Florida, USA[J]. American Journal of Botany, 1998, 85: 1745-1752.[25]Isikawa S. Light sensitivity against germination. I. Photoperiodism in seeds[J]. Botanical Magazine Tokyo, 1954, 67: 51-56.[26]Cumming B G. The dependence of germination on photoperiod, light quality, and temperature in Chenopodium spp[J]. Canadian Journal of Botany, 1963, 41: 1211-1233.[27]Densmore R V. Effect of day length on germination of seeds collected in Alaska[J]. American Journal of Botany, 1997, 84: 274-278.[28]赵笃乐. 光对种子休眠与萌发的影响[J]. 生物学通报, 1995, 30: 24-25.[29]Black M, Wareing P F. Growth studies in woody species. VII. Photoperiodic control of germination in Betula pubescensEhrh[J]. Physiologia Plantarum, 1955, 8: 300-316.[30]Stearns F, Olsen J. Interactions of photoperiod and temperature affecting seed germination in Tsuga canadensis[J]. American Journal of Botany, 1958, 45: 53-58.[31]Baskin J M, Baskin C C. Effect of photoperiod on germination of Cyperus inflexus seeds[J]. Botanical Gazette, 1976, 137: 269-273.[32]Bliss D, Smith H. Penetration of light into soil and its role in the control of seed germination[J]. Plant, Cell and Environment, 1985, 8: 475-483.[33]Tester M, Morris C. The penetration of light through soil[J]. Plant, Cell & Environment, 1987, 10: 281-286.[34]Wesson G, Wareing P F. The induction of light sensitivity in weed seeds by burial[J]. Journal of Experimental Botany, 1969, 20: 414-425.[35]Milberg P, Andersson L. Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species[J]. Canadian Journal of Botany, 1997, 75: 1998-2004.[36]Scopel A L, Ballaré C L, Sánchez R A. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations[J]. Plant, Cell and Environment, 1991, 14: 501-508.[37]Górski T, Górska K. Inhibitory effects of full daylight on the germination of Lactuca sativa L[J]. Planta, 1979, 144: 121-124.[38]Pons T L. Seed responses to light[A]. Seeds: The Ecology of Regeneration in Plant Communities[M]. Wallingford: CABI Publishing, 2000: 237-260.[39]Taylorson R B, Borthwick H A. Light filtration by foliar canopies: significance for light controlled weed seed germination[J]. Weed Science, 1969, 17: 48-51.[40]Fenner M. The induction of a light requirement in Bidens pilosa seeds by leaf canopy shade[J]. New Phytologist, 1980, 84: 103-106.[41]Silvertown J W. Leaf-canopy-induced seed dormancy in a grassland flora[J]. New Phytologist, 1980, 85: 109-118.[42]Górski T. Germination of seeds in the shadow of plants[J]. Physiologia Plantarum, 1975, 34: 342-346.[43]Górski T, Górska K, Nowicki J. Germination of seeds of various herbaceous species under leaf canopy[J]. Flora, 1977, 166: 249-259.[44]Górski T, Górska K, Rybicki J. Studies on the germination of seeds under leaf canopy[J]. Flora, 1978, 167: 289-299.[45]Ballard L A T. Physical barriers to germination[J]. Seed Science and Technology, 1981, 1: 285-303.[46]Keeley J E. Seed germination and life history syndromes in the California chaparral[J]. Botanical Review, 1991, 57: 81-116.[47]Keeley J E. Seed germination patterns in fire-prone Mediterranean-climate regions[A]. In: Arroyo M T K, Zedler P H, Fox M D. Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia[M]. San Diego: Academic Press, 1995: 239-273.[48]Kilian D, Cowling R M. Comparative seed biology and co-existence of two fynbos shrub species[J]. Journal of Vegetation Science, 1992, 3: 637-646.[49]Keeley J E, Bond W J. Convergent seed germination in South African fynbos and Californian chaparral[J]. Plant Ecology, 1997, 133: 153-167.[50]Herranz J M, Gerrandis P, Martinez-Sanchez J J. Influence of heat on seed germination of seven Mediterranean Leguminosae species[J]. Plant Ecology, 1998, 136: 95-103.[51]Baskin J M, Baskin C C. New approaches to the study of the evolution of physical and physiological dormancy, the two most common classes of seed dormancy on earth[A]. In: Nicolas G, Bradford K J, Come D,et al. The Biology of Seeds: Recent Research Advances[M]. Wallingford: CABI Publishing, 2003: 371-380.[52]Brown N A C. Promotion of germination of fynbos seeds by plant-derived smoke[J]. New Phytologist, 1993, 123: 575-583.[53]Keeley J E, Fotheringham C J. Smoke induced seed germination of California chaparral[J]. Ecology, 1998, 79: 2320-2336.[54]Roche S, Dixon K W, Pate J S. Seed ageing and smoke: partner cues in the amelioration of seed dormancy in selected Australian native species[J]. Australian Journal of Botany, 1997, 45: 783-815.[55]Tieu A, Dixon K W, Meney K A,et al. Interaction of soil burial and smoke on germination patterns in seeds of selected Australian native plants[J]. Seed Science Research, 2001, 11: 69-76.[56]Van de Venter H A, Esterhuizen A D. The effects of factors associated with fire on seed germination of Erica sessiliflora and E. hebgecalys (Ericaceae)[J]. South African Journal of Botany, 1988, 54: 301-304.[57]Flematti G R, Ghisalberti E L, Dixon K W,et al. A compound from smoke that promotes seed germination[J]. Science, 2004, 305: 977.[58]Malakoff D A. Nitrogen oxide pollution may spark seeds growth[J].Science, 1997, 276: 1199.[59]Downes K S, Lamont B B, Light M E,et al. The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one[J]. Annuals of Botany, 2010, 106: 381-384.[60]Liu K, Baskin J M, Baskin C C,et al. Effect of diurnal fluctuating versus constant temperatures on germination of 445 species from the eastern Tibet Plateau[J]. PLoS ONE, 2013, 8: e69364.[61]Thompson K, Grime J P, Mason G. Seed germination in response to diurnal fluctuations of temperature[J]. Nature, 1997, 267: 147-149.[62]Benech Arnold R L, Ghersa C M, Sanchez R A,et al. The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers. Regulation of germination under leaf canopies[J]. Functonal Ecology, 1988, 3: 311-318.[63]Ren J, Tao L, Liu X M. Effect of sand burial depth on seed germination and seedling emergence of Calligonum L. species[J]. Journal of Arid Environment, 2002, 51: 603-611.[64]Chauhan B S, Gill G, Preston C. Seed germination and seedling emergence of threehorn bedstraw(Galium tricornutum)[J]. Weed Science, 2006, 54: 867-872.[65]Ghersa C M, Benech Arnold R L, Martinez-Ghersa M A. The role of fluctuating temperatures in germination and establishment of Sorghum halepense. Regulation of germination at increasing depths[J]. Functional Ecology, 1992, 6: 460-468.[66]Thompson K, Grime J P. A comparative study of germination responses to diurnally-fluctuating temperatures[J]. Journal of Applied Ecology, 1983, 20: 141-156.[67]Pons T L, Schrder H F J M. Significance of temperature fluctuation and oxygen concentration for germination of the rice field weeds Fimbristylis littoralis and Scirpus juncoides[J]. Oecologia, 1986, 68: 315-319.[68]Steinbauer G P, Grigsby B. Interaction of temperature, light and moistening agent in the germination of weed seeds[J]. Weeds, 1957, 5: 157.[69]Pons T L. Breaking of seed dormancy by nitrate as a gap detection mechanism[J]. Annals of Botany, 1989, 63: 139-143.[70]Hintikka V. Germination ecology of Galeopsis bifida (Lamiaceae) as a pioneer species in forest succession[J]. Silva Fennica, 1987, 21: 301-313.[71]Scharenbroch B C, Bockheim J G. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests[J]. Plant Soil, 2007, 294: 219-233.[72]Toole V T. Germination requirements of the seed of some introduced and native range grasses[J]. Proceeding Association Official Seed Analysts, 1938, 30: 227-243.[73]Hilton J R. The influence of light and potassium nitrate on the dormancy and germination of Avena fatua L. (wild oat) seed and its ecological significance[J]. New Phytologist, 1984, 96: 31-34.[74]Bell D T, King L A, Plummer J A. Ecophysiological effects of light quality and nitrate on seed germination in species from Western Australia[J]. Australian Journal of Ecology, 1999, 24: 2-10.[75]Saini H S, Bassi P S, Spencer M S. Seed germination in Chnopodium album L.: Further evidence for dependence of the effects of growth regulators on nitrate availability[J]. Plant Cell Environment, 1985, 8: 707-711.[76]Carmona R, Murdoch A J. Interactions of temperature and dormancy-relieving compounds on the germination of weed seeds[J]. Seed Science Research, 1995, 5: 227-236.[77]Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination[J]. New Phytologist, 2006, 171: 501-523.[78]Donohue K, Dorn L, Griffith C,et al. Environmental and genetic influences on the germination of Arabidopsis thaliana in the field[J]. Evolution, 2005, 59: 740-757.[79]Footitt S, Douterelo-Soler I, Clay H,et al. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways[J]. Proceedings of National Academy of Sciences of the United States of America, 2011, 108: 20236-20241.[80]Footitt S, Huang Z, Clay H,et al. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes[J].The Plant Journal, 2013, 74: 1003-1015.[81]Cadman C S C, Toorop P E, Hilhorst H W M,et al. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism[J]. The Plant Journal, 2006, 46: 805-822.[82]Oh E, Kang H, Yamaguchi S,et al. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis[J]. Plant Cell, 2009, 21:403-419.[83]Matakiadis T, Alboresi A, Jikumaru Y,et al. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy[J]. Plant Physiology, 2009, 149: 949-960. |
[1] | 魏瑞成,李金寒,何龙翔,王冉,邵明诚,郑勤. 雌激素胁迫对萝卜种子萌芽和幼苗生长及其累积效应的影响[J]. 草业学报, 2013, 22(5): 190-197. |
[2] | 卢艳敏,苏长青,李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响[J]. 草业学报, 2013, 22(4): 123-129. |
[3] | 陆嘉惠,吕新,吴玲,李学禹. 三种药用甘草种子对盐渍环境的萌发响应及其适宜生态种植区[J]. 草业学报, 2013, 22(2): 195-202. |
[4] | 杨景宁,王彦荣. PEG模拟干旱胁迫对四种荒漠植物种子萌发的影响[J]. 草业学报, 2012, 21(6): 23-29. |
[5] | 杨景宁,王彦荣. NaCl胁迫对四种荒漠植物种子萌发的影响[J]. 草业学报, 2012, 21(5): 32-38. |
[6] | 彭清青,李春杰,宋梅玲,梁莹,南志标. 不同酸碱条件下内生真菌对三种禾草种子萌发的影响[J]. 草业学报, 2011, 20(5): 72-78. |
[7] | 姜义宝,张芳,崔国文,王成章. 野生狭叶荨麻种子形态与萌发特性的研究[J]. 草业学报, 2010, 19(4): 255-258. |
[8] | 冯建永,庞民好,张金林,刘颖超. 复杂盐碱对黄顶菊种子萌发和幼苗生长的影响及机理初探[J]. 草业学报, 2010, 19(5): 77-86. |
[9] | 张玉,李聪3,白史且,王涌鑫3,李达旭2. 三种不同消毒剂对饲草菊苣种子萌发和生长的影响[J]. 草业学报, 2010, 19(1): 253-257. |
[10] | 马春晖,韩建国2,孙洁峰3,王栋. 结缕草种子发育过程中生理生化变化的研究[J]. 草业学报, 2009, 18(6): 174-179. |
[11] | 薛延丰,李慧明,易能,李优琴,石志琦. 微囊藻毒素(MC-RR)对白三叶种子萌发及幼苗生理生化特性影响[J]. 草业学报, 2009, 18(6): 180-185. |
[12] | 黄文达,王彦荣,胡小文. 三种荒漠植物种子萌发的水热响应[J]. 草业学报, 2009, 18(3): 171-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||