草业学报 ›› 2013, Vol. 22 ›› Issue (6): 280-294.DOI: 10.11686/cyxb20130634
任继周,林慧龙*
出版日期:
2013-12-20
发布日期:
2013-12-20
通讯作者:
任继周(1924-),男,山东平原人,中国工程院院士。作者简介:
任继周(1924-),男,山东平原人,中国工程院院士。
基金资助:
REN Ji-zhou, LIN Hui-long
Online:
2013-12-20
Published:
2013-12-20
摘要: 探知全球草地生态系统的土壤有机碳储量是调控全球陆地碳循环过程的必要环节和最大难题之一。本文回顾了草地生态系统土壤有机碳储量的研究进展, 分析了现有的草地土壤有机碳模拟技术——草地土壤有机碳模型的主要技术特征,就模型的基础数据、模型的结构和模型内的函数参数等三方面,讨论了现存草地土壤有机碳模拟技术的缺陷,提出样地清查、遥感分析和模型模拟方法的综合运用将是解决这一问题的根本途径。最后,提出了一种基于草地综合顺序分类系统(comprehensive sequential classification system of grassland, CSCS)的草地土壤有机碳储量分类指数模型的构架。将样地清查、基于CSCS的草地土壤有机碳分类指数模型与遥感的高时空分辨率特征三者耦合起来,分析不同草地类型、气候区划等生态条件下的草地土壤有机碳特征,以求提高草地土壤有机碳估算结果的准确性。此外,草地生态系统土壤的碳汇效应等生态功能与放牧利用不存在绝对对立关系,实现放牧的现代化转型是以对草地土壤有机碳储量精准估算为前提的。
中图分类号:
任继周,林慧龙. 草地土壤有机碳储量模拟技术研究[J]. 草业学报, 2013, 22(6): 280-294.
REN Ji-zhou, LIN Hui-long. Study on the simulation methods of grassland soil organic carbon: a review[J]. Acta Prataculturae Sinica, 2013, 22(6): 280-294.
Chapin F S, McFarland J, McGuire A D, et al. The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. Journal of Ecology, 2009, 97: 840-850. Paustian K. Modeling soil organic matter dynamics-global challenges. Sustainable Management of Soil Organic Matter. London: Published by CAB International Press, 2001: 43-53. Sampson R N, Apps M, Brown S, et al. Terrestrial biosphere carbon fluxes quantification of sinks and sources of CO2. Water, Air and Soil Pollution, 1993, 70: 3-15. Percival H J, Parfitt R L, Scott N A. Factors controlling soil carbon levels in New Zealand grasslands is clay content important. Soil Science Society of America Journal, 2000, 64(5): 1623-1630. Post W M, Peng T H, Emanuel W R, et al. The global carbon cycle. American Scientist, 1990, 78: 310-326. Eswarran H, Berg E V D, Reich P. Organic carbon in soils of the world. Soil Science Society of America Journal, 1993, 57: 192-194. Houghton R A. Soils and Global Change. London: Lewis Publisher, 1995: 45-65. Houghton R A. Changes in the Storage of Terrestrial Carbon Since 1850. Boca Raton: Lewis Publishers, 1995: 5-65. Lai R. World soils and the greenhouse effect. Global Change Newsletter, 1999, 37: 4-5. Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991, 351: 304-306. 王艳芬, 陈佐忠, Larry T T. 人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响. 植物生态学报, 1998, 22(6): 545-551. 王其兵, 李凌浩, 刘先华, 等. 内蒙古锡林河流域草原土壤有机碳及氮素的空间异质性分析. 植物生态学报, 1998, 22(5): 409-414. 王绍强, 周成虎. 中国陆地土壤有机碳库的估算. 地理研究, 1999, 16: 350-355. LeCain D R, Morgan J A, Schuman G E, et al. Carbon exchange and species composition of grazed pastures and enclosures in the shortgrass steppe of Colorado. Agriculture Ecosystems & Environment, 2002, 93: 421-435. Wang W, Fang J Y. Soil respiration and human effects on global grasslands. Global and Planetary Change, 2009, 67: 20-28. Sombroke W G, Nachtergaele F O, Hebel A. Amounts, dynamics and sequestering of carbon in tropical soil. AMBIO, 1993, 22: 417-425. Reeder J D, Schumna G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116: 457-463. Burke I C, Luarenroht W K, Milehunas D G. Biogeochemistry of managed grasslands in central North America. In: Pual E A, Paustian K, Elliott E T, et al. Soil Organic Matter in Temperate Agro-ecosystems: Long-term Experiments in North America. Boca Raton: CRC Press, 1997: 85-102. Bouwman A F. Global Distribution of the Major Soils and Land Cover Types. New York: John Wiley and Sons, 1990: 33-59. 陶贞, 次旦朗杰, 张胜华, 等. 草原土壤有机碳含量的控制因素. 生态学报, 2013, 33(9): 2684-2694. Verburg P S J, Gorissen A, Arp W J. Carbon allocation and decomposition of root-derived organic matter in a plant-soil system of Calluna vulgaris as affected by elevated CO2. Soil Biology and Biochemistry, 1998, 30(10-11): 1251-1258. Gorissen A, van Ginkel P J, van Veen J H, et al. Grass root decomposition is retarded when grass has been grown under elevated CO2. Soil Biology and Biochemistry, 1995, 27: 117-120. Van Ginkel P J, Whitemore A P, Gorissen A. Lolium perenne grasslands may function as a sink for atmospheric carbon dioxide. Journal of Environmental Quality, 1999, 28: 1580-1584. Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass. In: Bolin B, Degens E T, Kempe S, et al. The Global Carbon Cycle. Chichester: Jonh Willey & Sons, 1979: 129-182. Whittaker R H, Likens G E. Biosphere and Man. In: Lieth H, Whittaker R H. Primary Productivity of the Biosphere. New York: Springer-Verlag, 1975: 305-308. Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Agrizona.V.Biomass, production, and diversity along the elevation gradient. Ecology, 1975, 56: 771-790. Prentice I C. Biome modeling and the carbon cycle. In: Heimann M. The Global Carbon Cycle. Berlin: Springer-Verlag, 1993: 219-238. Schuman G E, Janzen H H, Herrick J E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 2002, 116: 391-396. 张英俊, 杨高文, 刘楠, 等. 草原碳汇管理对策. 草业学报, 2013, 22(2): 290-299. 杨红飞, 穆少杰, 李建龙. 气候变化对草地生态系统土壤有机碳储量的影响. 草业科学, 2012, 29(3): 392-399. 王绍强, 刘纪远, 于贵瑞. 中国陆地土壤有机碳蓄积量估算误差分析. 应用生态学报, 2003, 14(5): 797-802. Huang Y, Sun W J, Zhang W, et al. Changes in soil organic carbon of terrestrial ecosystems in China: a mini-review. Science China Life Sciences, 2010, 53: 766-775. 李东, 黄耀, 吴琴, 等. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报, 2010, 19(2): 160-168. 方精云, 刘国华, 徐嵩龄. 中国陆地生态系统碳库. 见: 王如松, 方精云, 高林, 等. 现代生态学的热点问题研究. 北京: 中国科学技术出版社, 1996: 251-276. Ni J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Climatic Change, 2001, 49: 339-358. Ni J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50: 205-218. Li K R, Wang S Q, Cao M K. Vegetation and soil carbon storage in China. Science in China Series D: Earth Science, 2004, 47: 49-57. Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13: 1989-2007. Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009-1013. Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s.Global Change Biology, 2010, doi: 10. 1111/j. 1365-2486. 2009.02123.x. Yang Y H, Fang J Y, Smith P, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004.Global Change Biology, 2009, 15: 2723-2729. Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981-2000.Science in China Series D: Earth Sciences,2007, 50: 1341-1350. Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 1996, 47: 151-163. 李克让, 王绍强, 曹明奎. 中国植被和土壤碳储量. 中国科学, 2003, 33(1): 72-80. Holdridge L R. Determination of world plant formations from simple climatic data. Science, 1947, 105: 367-368. Post W M, Izaurralde R C, Mann L K, et al. Monitoring and Verifying Changes of Organic Carbon in Soil. Climatic Change, 2001, 51: 73-99. Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and life zones. Nature, 1982, 298: 156-159. Smith P, Smith J U, McGill D S, et al. A comparison of the performance of nine soil organic matter models-using datasets from seven long-term experiments. Geoderma, 1997, 81: 153-225. Parton W J, Schimel D S, Cole C V. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry, 1988, (5): 109-131. Parton W J, Mosier A R, Ojima D S. Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochemical Cycles, 1996, 10: 401-412. Gijsman A J, Oberson A, Tiessell H, et al. Limited applicability of the CENTURY model to highly weathered tropical soils. Agronomy Journal, 1996, 88: 894-903. Li C, Frolking S, Frolking T A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 1992, 97: 9759-9776. Molina J A E, Clapp C E. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration and behaviour. Soil Science Society of America Journal, 1983, 47: 85-91. Jenkinson D S, Hart P B S, Rayner J H, et al. Modelling the turnover of organic matter in long-term experiment at Rothsmst-ed. In: June H Cooley. Soil Organic Matter Dynamic and Soil Productivity. Athens, Ga, USA: Intercol. Bulletin, 1987, 15: 1-8. Parton W J, Schimel D S, Cole C V. Analysis of factors controlling soil organic matter level in Great Plain grassland. Soil Science Society of America Journal, 1987, 51: 1173-1179. 肖向明, 王义凤, 陈佐忠. 内蒙古锡林河流域草原初级生产力和土壤有机质的动态及其对气候变化的反映. 植物学报, 1996, 38(1): 45-52. 李凌浩, 刘先华, 陈佐忠. 内蒙古锡林河流域羊草草原生态系统碳素循环研究. 植物学报, 1998, 40(10): 955-961. Mikhailova E A, Bryant R B, Degloria S D, et al. Modelling soil organic matter dynamics after conversion of native grassland to long-term continuous fallow using the Century model. Ecological Modelling, 2000, 132(3): 247-257. Dwibedi R S. Soil resources mapping: a remote sensing perspective. Remote Sensing Reviews, 2001, 20: 89-122. Chen F, Kissel D E, West L T, et al. Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Science Society of America Journal, 2000, 64: 746-753. Merry C J, Levine E R. Methods to assess soil carbon using remote sensing techniques. In: Lal R, Kimble J, Levine E, et al. Soils and Global Change. Boca Raton, FL: CRC Press, 1995: 265-274. 张文娟, 王绍强, 常华, 等. 遥感在土壤碳储量估算中的应用. 地理科学进展, 2005, 24(3): 118-126. 金峰, 杨浩, 赵其国. 土壤有机碳储量及影响因素研究进展. 土壤, 2000, 1: 11-17. 任继周, 胡自治, 牟新待. 我国草原类型第一级分类的生物气候指标. 甘肃农业大学学报, 1965, 2: 48-64. Ren J Z, Hu Z Z, Zhao J, et al. A Grassland classification system and its application in China. The Rangeland Journal, 2008, 30: 199-209. 林慧龙, 王军, 徐震, 等. 草地农业生态系统中的碳循环研究动态. 草业科学, 2005, 22(4): 59-65. Liang T G, Feng Q S, Cao J J, et al. Changes in global potential vegetation distributions from 1911 to 2000 as simulated by the Comprehensive Sequential Classification System approach. Chinese Science Bulletin, 2012, 57(11): 1298-1310. Liang T G, Feng Q S, Yu H, et al. Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassland Science, 2012, 58: 208-220. 岳曼, 常庆瑞, 王飞, 等. 土壤有机碳储量研究进展. 土壤通报, 2008, 39(5): 1173-1178. 李忠, 林心雄. 内蒙古草原植物—土壤系统中有机碳的转化. 土壤学报, 1995, 32(增刊2): 7-17. 解宪丽, 孙波, 周慧珍, 等. 不同植被下中国土壤有机碳的储量与影响因子. 土壤学报, 2004, 41(5): 687-699. 高安社, 郑淑华, 赵萌莉, 等. 不同草原类型土壤有机碳和全氮的差异. 中国草地, 2007, 27(6): 44-48. Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 1993, 7(2): 275-290. Xiao H L. Climate change in relation to soil organic matter. Soil and Environment Science, 1999, 8(4): 300-304. 樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003, 25(6): 51-58. Derner J D, Schuman G E. Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. Journal of Soil and Water Conservation, 2007, 62: 77-85. Wang G X, Qian J, Cheng G D, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 2002, 291(1/3): 207-217. 陈文业, 张瑾, 戚登臣, 等. 黄河首曲-玛曲县高寒草甸沙化动态演变趋势及其驱动因子定量分析. 草业学报, 2013, 22(2): 11-21. Lin H L, Zhao J, Liang T G, et al. A classification indices-based model for net primary production (NPP) and potential productivity of vegetation in China. International Journal of Biomathematics, 2012, 5(3): 1-12. Lin H L, Feng Q S, Liang T G, et al. Modelling global-scale potential grassland changes in spatio-temporal patterns to global climate change. International Journal of Sustainable Development & World Ecology, 2013, 20(1): 83-96. Lin H L, Wang X L, Liang T G, et al. Spatio-temporal dynamics on the distribution, extent and Net Primary Productivity of potential grassland in response to climate changes in China. Rangeland Journal, 2013, 35(4): 409-425. 任继周, 胡自治, 牟新待, 等. 草原的综合顺序分类法及其发生学意义. 中国草原, 1980, 1: 12-24. 任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22. 谢尼科夫 А П. 苏联的草甸植被. 张绅, 译. 北京: 科学出版社, 1959: 44-48. Stoddart L A, Smith A D, Box T W. Range Management. New York: McGraw-Hill, 1943: 66-123. Wang H, Ni J, Prentice I C. Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Regional Environmental Change, 2011, 11(3): 715-727. Yuan Q Z, Zhao D S, Wu S H, et al. Validation of the integrated biosphere simulator in simulating the potential natural vegetation map of China. Ecological Research, 2011, 26(5): 917-929. Hickler T, Vohland K, Feehan J, et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography, 2012, 21(1): 50-63. Kaplan J O. Geophysical Applications of Vegetation Modeling (Dissertation). Jena, Germany: Lund University, 2001: 1-114. Kaplan J O. Wetlands at the last glacial maximum: Distribution and methane emissions. Geophysical Research Letters, 2002, 29: 1-3. Kaplan J O, Bigelow N H, Prentice I C, et al. Climate change and arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research, 2003, 108: 8171. Holdridge L R. Life Zone Ecology. San Jose: Tropical Science Center, 1967: 1-146. Feng Q S, Liang T G, Huang X D, et al. Characteristics of global potential natural vegetation distribution from 1911 to 2000 based on comprehensive sequential classification system approach. Grassland Science, 2013, 59: 87-99. Lin H L. A new model of grassland net primary productivity (NPP) based on the integrated orderly classification system of grassland.Fuzzy Systems and Knowledge Discovery, 2009. Sixth International Conference on. IEEE, 2009: 52-56. Lin H L, Zhang Y J. Evaluation of six methods to predict grassland net primary productivity along an altitudinal gradient in the Alxa Rangeland, Western Inner Mongolia, China. Grassland Science, 2013, 59: 100-110. 公延明, 胡玉昆, 阿德力, 等. 高寒草原对气候生产力模型的适用性分析. 草业学报, 2010, 19(2): 7-13. 邹德富, 冯琦胜, 梁天刚. 甘南地区植被类型及其NPP研究. 遥感技术与应用, 2011, 26(5): 577-583. 赵金飞. 基于遥感影像的草场可持续利用研究. 乌鲁木齐: 新疆大学, 2011. 赵军, 师银芳, 王大为. 基于IOCS的内蒙古潜在植被NPP空间分布特征研究. 自然资源学报, 2012, 27(11): 1870-1880. 任继周. 放牧, 草原生态系统存在的基本方式—兼论放牧的转型. 自然资源学报, 2012, 27(8): 1259-1275. 南京土壤所. 中国土壤图集. 中国土壤图. 北京: 地图出版社, 1986. 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998. 全国土壤普查办公室. 中国土种志(第1卷). 北京: 中国农业出版社, 1993. 全国土壤普查办公室. 中国土种志(第2卷). 北京: 中国农业出版社, 1994. 全国土壤普查办公室. 中国土种志(第3卷). 北京: 中国农业出版社, 1994. 全国土壤普查办公室. 中国土种志(第4卷). 北京: 中国农业出版社, 1995. 全国土壤普查办公室. 中国土种志(第5卷). 北京: 中国农业出版社, 1995. 全国土壤普查办公室. 中国土种志(第6卷). 北京: 中国农业出版社, 1996. 廖国藩, 贾幼陵. 中国草地资源. 北京: 中国科学技术出版社, 1996. 中国科学院南京土壤研究所. 土壤数据库. . http://www.soil.csdb.cn/. 中国科学院地理科学与资源研究所. 地球系统科学数据共享网—草业开发与生态建设专题库. . http: //159.226.111.21/grass/grass11.asp. 中国农业科学院资源区划所. 中国草地科学网. . http://www. grass-science. cn. Reid R S, Thornton P K, McCrabb G J, et al. Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics. Environment, Development and Sustainability, 2004, 6: 91-109. Pineiro G, Paruelo J M, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2010, 63: 109-119. Milchunas D G, Lauenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 1993, 63: 327-366. Derner J D, Boutton T W, Briske D D. Grazing and ecosystem carbon storage in the North American Great Plains. Plant and Soil, 2006, 280: 77-90. Smoliak S, Dormaar J F, Johnston A. Long-term grazing effects on Stipa-Bouteloua prairie soils. Journal of Range Management, 1972, 25: 246-250. Wienhold B J, Hendrickson J R, Karn J F. Pasture management influences on soil properties in the Northern Great Plains. Journal of Soil and Water Conservation, 2001, 56: 27-31. Nosetto M D, Jobbagy E G, Paruelo J M. Carbon sequestration in semi-arid rangelands: Comparison of Pinus ponderosa plantations and grazing exclusion in NW Patagonia. Journal of Arid Environments, 2006, 67: 142-156. Raiesi F, Asadi E. Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 2006, 43: 76-82. Shrestha G, Stahl P D. Carbon accumulation and storage in semi-arid sagebrush steppe: Effects of long-term grazing exclusion. Agriculture Ecosystems & Environment, 2008, 125: 173-181. Su Y Z, Li Y L, Cui H Y, et al. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena, 2005, 59: 267-278. Pei S F, Fu H, Wan C G. Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China. Agriculture Ecosystems & Environment, 2008, 124: 33-39. Zuo X A, Zhao H L, Zhao X Y, et al. Spatial pattern and heterogeneity of soil properties in sand dunes under grazing and restoration in Horqin Sandy Land, Northern China. Soil Tillage Research, 2008, 99: 202-212. Golluscio R A, Austin A T, Martinez G C, et al. Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian Steppe: combination of direct and indirect effects. Ecosystems, 2009, 12: 686-697. Zak D R, Tilman D, Parmenter R R, et al. Plant production and soil microorganisms in late successional ecosystems: A continental-scale study. Ecology, 1994, 75: 2333-2347. Hassink J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization. Soil Biology & Biochemistry, 1994, 26: 1221-1231. Arnqvist G, Wooster D. Meta-analysis: synthesizing research findings in ecology and evolution. Trends in Ecology & Evolution, 1995, 10: 236-240. Alvarez R, Lavado R S. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma, 1998, 83: 127-141. Feller C, Beare M H. Physical control of soil organic matter dynamics in the tropics. Geoderma, 1997, 79: 69-116. Bronick C J, Lal R. Soil structure and management: a review. Geoderma, 2005, 124: 3-22. Gao Y H, Luo P, Wu N, et al. Impacts of grazing intensity on nitrogen pools and nitrogen cycle in an Alpine meadow on the eastern Tibetan Plateau. Applied Ecology and Environmental Research, 2008, 6: 69-79. Klumpp K, Fontaine S, Attard E, et al. Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. Journal of Ecology, 2009, 97: 876-885. Bardgett R D, Wardle D A, Yeates G W. Linking above-ground and below-ground interactions: How plant responses to foliar herbivory influence soil organism. Soil Biology & Biochemistry, 1998, 30: 1867-1878. Sanjari G, Ghadiri H, Ciesiolka C A A, et al. Comparing the effects of continuo and time-controlled grazing systems on soil characteristics in Southeast Queensland. Australian Journal of Soil Research, 2008, 46: 348-358. Potter K N, Daniel J A, Altom W, et al. Stocking rate effect on soil carbon and nitrogen in degraded soils. Journal of Soil and Water Conservation, 2001, 56: 233-236. Li C L, Hao X Y, Zhao M L, et al. Influence of historic sheep grazing on vegetation and soil properties of a Desert Steppe in Inner Mongolia. Agriculture Ecosystems & Environment, 2008, 128: 109-116. Steffens M, Kolbl A, Totsche K U, et al. Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China). Geoderma, 2008, 143: 63-72. 马秀枝, 王艳芬, 汪诗平, 等. 放牧对内蒙古锡林河流域草原土壤碳组分的影响. 植物生态学报, 2005, 29(4): 569-576. 林慧龙, 王钊齐, 张英俊. 综合系统评价视角下的草畜平衡机制刍议. 草地学报, 2011, 19(5): 717-723. 林丽, 李以康, 张法伟, 等. 人类活动对高寒矮嵩草草甸的碳容管理分析. 草业学报, 2013, 22(1): 308-314. |
[1] | 柴华,方江平,温丁,李杰,何念鹏. 内蒙古灌丛化草地取样位置对评估土壤碳氮贮量的影响[J]. 草业学报, 2014, 23(6): 28-35. |
[2] | 徐沙,龚吉蕊,张梓榆,刘敏,王忆慧,罗亲普. 不同利用方式下草地优势植物的生态化学计量特征[J]. 草业学报, 2014, 23(6): 45-53. |
[3] | 李金辉,卢鑫,周志宇,赵萍,金茜,周媛媛. 不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J]. 草业学报, 2014, 23(6): 61-68. |
[4] | 陈骥,曹军骥,魏永林,刘吉宏,马扶林,陈迪超,冯嘉裕,夏瑶,岑燕. 青海湖北岸高寒草甸草原非生长季土壤呼吸对温度和湿度的响应[J]. 草业学报, 2014, 23(6): 78-86. |
[5] | 闫钟清,齐玉春,董云社,彭琴,孙良杰,贾军强,曹丛丛,郭树芳,贺云龙. 草地生态系统氮循环关键过程对全球变化及人类活动的响应与机制[J]. 草业学报, 2014, 23(6): 279-292. |
[6] | 张志南,武高林,王冬,邓蕾,郝红敏,杨政,上官周平. 黄土高原半干旱区天然草地群落结构与土壤水分关系[J]. 草业学报, 2014, 23(6): 313-319. |
[7] | 王春燕,张晋京,吕瑜良,王莉,何念鹏. 长期封育对内蒙古羊草草地土壤有机碳组分的影响[J]. 草业学报, 2014, 23(5): 31-39. |
[8] | 于雯超,宋晓龙,修伟明,张贵龙,赵建宁,杨殿林. 氮素添加对贝加尔针茅草原凋落物分解的影响[J]. 草业学报, 2014, 23(5): 49-60. |
[9] | 卢虎,李显刚,姚拓,蒲小鹏. 高寒生态脆弱区“黑土滩”草地植被与土壤微生物数量特征研究[J]. 草业学报, 2014, 23(5): 214-222. |
[10] | 杨阳,刘秉儒,宋乃平,杨新国. 人工柠条灌丛密度对荒漠草原土壤养分空间分布的影响[J]. 草业学报, 2014, 23(5): 107-115. |
[11] | 高海宁,马国泰,李彩霞,陈勇,宋涛,张勇,焦扬. 菌剂对铬(Ⅵ)污染土壤中坪草幼苗生理生化的影响[J]. 草业学报, 2014, 23(4): 189-194. |
[12] | 马琳雅,崔霞,冯琦胜,梁天刚. 2001-2011年甘南草地植被覆盖度动态变化分析[J]. 草业学报, 2014, 23(4): 1-9. |
[13] | 王翀,林慧龙,何兰,曹坳程. 紫茎泽兰潜在分布对气候变化响应的研究[J]. 草业学报, 2014, 23(4): 20-30. |
[14] | 邓少虹,林明月,李伏生,苏以荣,刘坤平. 施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响[J]. 草业学报, 2014, 23(4): 262-268. |
[15] | 吴强盛,袁芳英,费永俊,李莉,黄咏明. 菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响[J]. 草业学报, 2014, 23(4): 269-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||