[1] 中国饲用植物志编辑委员会. 中国饲用植物志(第一卷)[M]. 北京: 农业出版社, 1978: 21-22. [2] 王苹, 李建东, 欧勇玲. 松嫩平原盐碱化草地星星草的适应性及耐盐生理特性的研究[J]. 草地学报, 1997, 5(2): 80-84. [3] 石德成, 殷丽娟. 盐与碱对星星草胁迫作用的差异[J]. 植物学报, 1993, 35(2): 144-149. [4] 王锁民, 朱兴运, 赵银. 盐胁迫对拔节期碱茅游离氨基酸成分及脯氨酸等含量的影响[J]. 草业学报, 1994, 3(3): 22-26. [5] 王锁民, 朱兴运, 王增荣. 渗透调节在碱茅(Puccinellia tenuiflora)幼苗适应盐逆境中的作用初探[J]. 草业学报, 1993, 2(3): 40-46. [6] 刘延吉, 张蕾, 田晓艳. 盐胁迫对碱茅幼苗叶片内源激素、NAD激酶及Ca2+-ATPase的效应[J]. 草业科学, 2008, 25(4): 51-54. [7] 徐安凯. 碱茅发芽生理及恒温发芽选育效果研究[D]. 兰州: 甘肃农业大学, 1995. [8] 李艳波, 陈月艳, 孙国荣, 等. 盐碱胁迫下星星草种子萌发过程中氮代谢的初步研究[J]. 植物研究, 1999, 19(2): 153-158. [9] 陈月艳, 孙国荣, 李景信. Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响[J]. 草业科学, 1997, 14(2): 27-30. [10] 朱宇旌, 张勇, 胡自治, 等. 小花碱茅根适应盐胁迫的显微结构研究[J]. 中国草地, 2001, 23(1): 37-40. [11] 韦存虚, 王建军, 王建波. Na2CO3胁迫对星星草叶肉细胞超微结构的影响[J]. 生态学报, 2006, 26(1): 108-114. [12] 杨春雪, 申家恒. 星星草受精作用及其胚与胚乳早期发育的观察[J]. 武汉植物学研究, 2004, 22(2): 91-97. [13] 阎顺国, 朱兴运, 郭树林. 碱茅草对土壤盐分动态及盐量平衡的影响[J]. 水土保持学报, 1990, 4(1): 44-48. [14] 朱兴运, 王锁民, 阎顺国. 碱茅属植物抗盐性与抗盐机制的研究进展[J]. 草业学报, 1994, 3(3): 9-15. [15] Wang S M, Zhao G Q, Gao Y S. Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat[J]. Journal of Plant Nutrition, 2004, 27: 1841-1857. [16] Peng Y H, Zhu Y F, Mao Y Q. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+[J]. Journal of Experimental Botany, 2004, 55: 939-949. [17] Wang C M, Zhang J L, Liu X S. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+[J]. Plant Cell and Environment, 2009, 32: 486-496. [18] 吴青年, 徐安凯. 碱茅草改良碱斑草场综合技术[J]. 中国农业科学, 1987, 20(1): 92. [19] 徐安凯. “吉农朝鲜碱茅”与“三北”地区盐碱地的改良[J]. 牧草与饲料, 2007, 1(2): 3-5. [20] 齐宝林, 高国臣, 赵云鹏. 耐盐抗寒优质牧草——碱茅[J]. 吉林林业科技, 2005, (9): 4-7. [21] Hong Z. Removal of feedback inhibition of Δ 1-pyrroline-5-carboxylate synthase results in increased proline accumulation and protection of plants from osmotic stress[J]. Plant Physiology, 2000, 122: 1129-1136. [22] Vernon D M, Bohnert H J. A novel methy transferase induced by osmotic stress in the facultative Mesembryanthemum crystallium[J]. Embo Journal, 1992, 11: 2077-2085. [23] 杨铮, 钟鸣, 郭志富. 盐胁迫下朝鲜碱茅的甜菜碱醛脱氢酶活性变化及其基因保守区的克隆[J]. 植物生理学通讯, 2007, 4(3): 430-434. [24] 钟鸣, 张佳, 郭志富. 朝鲜碱茅BADH基因3′端及5′端部分序列的扩增[J]. 华北农学报, 2009, 24(3): 46-50. [25] 方允中, 郑荣梁. 自由基生物学的理论与应用[M]. 北京: 科学出版社, 2002: 30-31. [26] 张晓磊. 星星草PtDHAR及PtFer基因的克隆与表达分析[D]. 黑龙江: 东北林业大学, 2008. [27] Yabuta Y, Motoki T, Yoshimura K. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress[J]. The Plant Journal, 2002, 32: 915-925. [28] Guenriot M L, Yi Y. Iron: Nutritions, noxious and not readily avaliable[J]. Plant Physiology, 1994, 104(33): 815-820. [29] Balla G, Jacob H S, Balla J. Ferritin: A cytoprotective antioxidant strategem of endothelium[J]. Journal of Biology Chemistry, 1992, 267: 18148-18153. [30] Asada K. Ascorbate peroxidase: A hydrogen peroxide scavenging enzyme in plants, Physiologia[J]. Plantarum, 1992, 85(2): 235-241. [31] Shigeoka S, Nakano Y, Kitaoka S. Purification and some properties of L-ascorbic acid peroxidase in Euglena gracilis Z[J]. Archives of Biochemistry and Biophysics, 1980, 201(1): 121-127. [32] 管清杰, 李琳, 高野哲夫. 朝鲜碱茅抗坏血酸过氧化物酶的基因克隆和表达[J]. 基因组学与应用生物学, 2009, 28(4): 631-639. [33] Song F N, Yang C P, Liu X M. Effect of salt stress on activity of superoxide dismutase (SOD) in Ulmuspumila L[J]. Journal of Forestry Research, 2006, 17(1): 13-16. [34] 张海娜, 李小娟, 李存东. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响[J]. 作物学报, 2008, 34(8): 1403-1408. [35] Alscher R G, Erturk N, Heath L S. Role of super oxide dismutases (SODs) in controlling oxidative stress in Plants[J]. Journal of Experimental Botany, 2002, 53: 1331-1341. [36] 吴建慧, 高野哲夫, 柳参奎. 碱茅(Puccinellia tenuifolra)Put-Cu/Zn-SOD基因的克隆及在酵母中的表达[J]. 基因组学与应用生物学, 2009, 28(1): 10-14. [37] Ward J M, Hirsi K D. Plants pass the salt[J]. Trends in Plant Science, 2003, 8(5): 200-201. [38] Teste R M, Daenport R. Na+ tolerance and Na+ transport in higher plants[J]. Annals of Botany, 2003, 91(5): 503-527. [39] Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cells[J]. Biochimica et Biophysica Acta, 2000, 1465: 145-151. [40] 程玉祥. 星星草质膜型Na+/H+逆向转运蛋白基因的克隆和特性分析[J]. 植物生理学通讯, 2008, 44(1): 59-64. [41] 程玉祥. 过量表达星星草PtSOS1提高拟南芥的耐盐性[J]. 植物生理学通讯, 2008, 44(6): 1125-1130. [42] Kendal D, Hirschi, Victor D. Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance1[J]. Plant Physiology, 2000, 124: 125-134. [43] Takehiro K, Masayoshi M. Residues in internal repeats of the rice cation/H+ exchanger are involved in the transport and selection of cations[J]. The Journal of Biological Chemistry, 2004, 279: 812-819. [44] Liu H, Zhang X X, Takan T. Characterization of a PutCAX1 gene from Puccinellia tenuiflora that confers Ca2+ and Ba2+ tolerance in yeast[J]. Biochemieal and Biology Physieal Research Communieations, 2009, 383: 392-396. [45] Arciadeb G, Nme S, Uelosma B. Sodium transport and HKT transporters: The rice model[J]. Plant Journal, 2003, 34(6): 788-801. [46] Aser P M, Sooy H O, Shimas G O. Glycine residues in potassium channel-likes electivity filters determine potassiums electivity in four-loopper-subunit HKT transporters from plants[J]. Proceedings of the National Academy of Sciences of the united states of america, 2002, 99(9): 6428-6433. [47] Ardie S W, Xie L, Takahashi R. Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuifiora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis[J]. Journal of Experimental Botany, 2009, 12: 1-12. [48] Zhang C Q, Nishiuchi S, Liu S K. Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice[J]. Biochemistry and Molecular Biology reports, 2008, 41(6): 448-454. [49] Moons A, Gielen J, Vandekerckhove J. An abscisic-acid and salt stress responsive rice cDNA from a novel plant gene family[J]. Planta, 1997, 202(4): 443-454. [50] Huang M D, Wu W L. Over expression of TMAC2, an ovel negative regulator of abscisic acid and salinity responses, haspleio tropic effects in Arabidopsis thaliana[J]. Plant Molecular Biology, 2007, 63(4): 557-569. [51] 于雪飞, 杨传平. 碱茅(Puccinelliatenuiflora) Put-R40g3基因的分离及其与逆境的应答[J]. 分子植物育种, 2009, 7(2): 251-256. [52] Botella J R, Arteca J M, Somodevill A M. Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in Mungbean (Vignar adiata)[J]. Plant Molecular Biology, 1996, 30: 1129-1137. [53] Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physion, 2000, 124: 941-948. [54] Jona K C, Okresz L, Bogre L. Complexity, cross talk and integration of plant MAP kinase signaling[J]. Current Opinion in Plant Biology, 2002, 5: 415-424. [55] Zhang S Q, Daniel F. MAPKcascades in plant defense signaling[J]. Trends in Plant Science, 2001, 6(11): 520-527. [56] Hackett R M, Oh S A, Morris P C. A tomato MAP kinase kinase gene differentially regulated during fruit development leaf senscence and wounding[J]. Plant Physiology, 1998, 117: 1526-1531. [57] 刘桂丰, 褚延广, 王玉成. cDNA微阵列技术研究NaHCO3胁迫下星星草基因表达谱[J]. 西北植物学报, 2005, 25(5): 887-892. [58] Wang Y C, Yang C P, Liu G F. Microarray and suppression subtractive hybridization analyses of gene expression in Puccinellia tenuifiora after exposure to NaHCO3[J]. Plant Science, 2007, 173: 309-320. [59] Wang Y C, Yang C P, Liu G F. Development of a cDNA microarray to identify gene expression of Puccinellia tenuifiora under salineealkali stress[J]. Plant Physiology and Biochemistry, 2007, 45: 567-576. [60] Wang Y C, Yang C P, Liu G F. Identification of expressed sequence tags in an alkali grass (Puccinellia tenuifiora) cDNA library[J]. Journal of Plant Physiology, 2007, 164: 78-89. [61] 周学丽, 周青平, 颜红波, 等. NaCl胁迫对同德小花碱茅苗期生理特性的影响[J]. 草业科学, 2009, 26(6): 101-105. [62] 张一弓, 张丽静, 傅华. 植物维生素E合成酶基因克隆及其逆境生理研究进展[J]. 草业学报, 2009, 18(5): 235-242. [63] 梁哲, 姜三杰, 未丽, 等. 三叶草基因工程研究进展[J]. 草业学报, 2009, 18(2): 205-211. [64] 郑轶琦, 刘建秀. 草坪草分子遗传图谱的构建与应用研究进展[J]. 草业学报, 2009, 18(1): 155-162. |