[1] Bai L P, Sui F G, Ge T D, et al. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize[J]. Pedosphere, 2006, 16(3): 326-332. [2] 杨维才, 瞿礼嘉, 袁明, 等. 2008 年中国植物科学若干领域重要研究进展[J]. 植物学报, 2009, 44(4): 379-409. [3] Becana M, Dalton D A, Moran J F, et al. Reactive oxygen species and antioxidants in legume nodules[J]. Physiologia Plantarum, 2000, 109(4): 372-381. [4] Bowler C, Vanmontagu M, Inze D. Superoxide-dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116. [5] Molassiotis A, Sotiropoulos T, Tanou G, et al. Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh)[J]. Environmental and Experimental Botany, 2006, 56(1): 54-62. [6] Basu S, Roychoudhury A, Saha P, et al. Differential antioxidative responses of indica rice cultivars to drought stress[J]. Plant Growth Regulation, 2010, 60(1): 51-59. [7] 苏加楷. 优良牧草及栽培技术[M]. 北京: 金盾出版社, 2001: 40-41. [8] 孙启忠, 韩建国. 科尔沁沙地达乌里胡枝子生物量研究[J]. 中国草地, 2001, 23(4): 21-26. [9] 黄瑾, 姜峻,徐炳成. 黄土丘陵区达乌里胡枝子人工草地生产力与土壤水分特征研究[J]. 中国农学通报, 2005, 21(6): 245-248. [10] 朱志诚, 贾东林. 达乌里胡枝子群落生物量初步研究[J]. 中国草地, 1994, 3: 25-28. [11] 邢毅, 赵祥, 董宽虎, 等. 不同居群达乌里胡枝子形态变异研究[J]. 草业学报, 2008, 17(4): 26-31. [12] 侯志兵, 赵祥, 白志明, 等. 不同浸种时间对达乌里胡枝子种子发芽力的影响[J]. 草原与草坪, 2007,(5): 11-14. [13] 赵祥, 张垚, 董宽虎, 等. 达乌里胡枝子种子发芽吸水规律及吸水模型研究[J]. 草地学报, 2008, 16(3): 220-226. [14] 胡卉芳, 王照兰, 史万光, 等. PEG 胁迫下达乌里胡枝子种子萌发期的抗旱性差异[J]. 中国草地学报, 2007, 29(6): 86-91. [15] Bai T, Li C, Ma F, et al. Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species[J]. Plant and Soil, 2010, 327(1): 95-105. [16] 慕自新, 张岁岐, 郝文芳, 等. 玉米根系形态性状和空间分布对水分利用效率的调控[J]. 生态学报, 2005, 25(11): 2895-2900. [17] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [18] Beyer W. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions* 1[J]. Analytical Biochemistry, 1987, 161(2): 559-566. [19] Saruyama H, Tanida M. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and-tolerant cultivars of rice (Oryza sativa L.)[J]. Plant Science, 1995, 109(2): 105-113. [20] Tanida M. Catalase activity of rice seed embryo and its relation to germination rate at a low temperature[J]. Breeding Science, 1996, 46: 23-28. [21] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系[J]. 植物生理学通讯, 1990, 6: 55-57. [22] 秦文静, 梁宗锁. 四种豆科牧草萌发期对干旱胁迫的响应及抗旱性评价[J]. 草业学报, 2010, 19(4): 61-70. [23] Mkel P, Krkkinen J, Somersalo S. Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RuBPCO activities in tomato grown under drought or salinity[J]. Biologia Plantarum, 2000, 43(3): 471-475. [24] Nikolaeva M, Maevskaya S, Shugaev A, et al. Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity[J]. Russian Journal of Plant Physiology, 2010, 57(1): 87-95. [25] Munné-Bosch S, Alegre L. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants[J]. Planta, 2000, 210(6): 925-931. [26] Nayyar H, Singh S, Kaur S, et al. Differential sensitivity of Macrocarpa and Microcarpa types of chickpea (Cicer arietinum L.) to water stress: Association of contrasting stress response with oxidative injury[J]. Journal of Integrative Plant Biology, 2006, 48(11): 1318-1329. [27] Herbinger K, Tausz M, Wonisch A, et al. Complex interactive effects of drought and ozone stress on the antioxidant defence systems of two wheat cultivars[J]. Plant Physiology and Biochemistry, 2002, 40(6-8): 691-696. [28] 郑荣梁,黄中洋. 自由基医学与农学基础[M]. 北京: 高等教育出版社,2001. [29] Malecka A, Jarmuszkiewicz W, Tomaszewska B. Antioxidative defense to lead stress in subcellular compartments of pea root cells[J]. Acta Biochimica Polonica, 2001, 48(3): 687. [30] Bakalova S, Nikolova A, Nedeva D. Isoenzyme profiles of peroxidase catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds[J]. Journal of Plant Physiology, 2004, 30: 64-77. [31] Csiszár J, Fehér-Juhász E, Kotai E, et al. Effect of osmotic stress on antioxidant enzyme activities in transgenic wheat calli bearing MsALR gene[J]. Acta Biologica Szegediensis, 2005, 49(1-2): 49-50. [32] Pan Y, Wu L, Yu Z. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch)[J]. Plant Growth Regulation, 2006, 49(2): 157-165. [33] Manivannan P, Abdul Jaleel C, Kishorekumar A, et al. Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress[J]. Colloids and Surfaces B: Biointerfaces, 2007, 57(1): 69-74. [34] Gunes A, Pilbeam D, Inal A, et al. Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation[J]. Communications in Soil Science and Plant Analysis, 2008, 39(13): 1885-1903. [35] 万里强, 李向林, 石永红, 等. PEG 胁迫下 4 个黑麦草品种生理生化指标响应与比较研究[J]. 草业学报, 2010, 19(1): 83-88. [36] Xiao X, Xu X, Yang F. Adaptive responses to progressive drought stress in two Populus cathayana populations[J]. Silva Fennica, 2008, 42(5): 705-719. [37] Abedi T, Pakniyat H. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.)[J]. Czech Journal of Genetics and Plant Breeding, 2010, 46(1): 27-34. [38] 桂世昌, 杨峰, 张宝艺, 等. 水分胁迫下扁穗牛鞭草根系保护酶活性变化[J]. 草业学报, 2010, 19(5): 278-282. [39] Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine[M]. Oxford: Oxford University Press, 2007. [40] 方允中,郑荣梁. 自由基生物学的理论与应用(第二版)[M]. 北京: 科学出版社, 2002: 5. [41] Gogorcena Y, Iturbe-Ormaetxe I, Escuredo P, et al. Antioxidant defenses against activated oxygen in pea nodules subjected to water stress[J]. Plant Physiology, 1995, 108(2): 753. [42] Jung S Y. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought[J]. Plant Science, 2004, 166(2): 459-466. [43] Bian S M, Jiang Y W. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky bluegrass in response to drought stress and recovery[J]. Scientia Horticulturae, 2009, 120(2): 264-270. [44] Sharma P, Dubey R. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings[J]. Plant Growth Regulation, 2005, 46(3): 209-221. [45] Moran J, Becana M, Iturbe-Ormaetxe I, et al. Drought induces oxidative stress in pea plants[J]. Planta, 1994, 194(3): 346-352. [46] Lu S, Wang Z, Niu Y, et al. Antioxidant responses of radiation-induced dwarf mutants of bermudagrass to drought stress[J]. Journal of the American Society for Horticultural Science, 2008, 133(3): 360-366. [47] Liu Z J, Zhang X L, Bai J G, et al. Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves[J]. Scientia Horticulturae, 2009, 121(2): 138-143. [48] 宋雁, 卢承前, 陈君石. 类胡萝卜素抗氧化和促氧化作用的影响因素[J]. 卫生研究, 2003, 32(4): 417-419. [49] Oshima S, Ojima F, Sakamoto H, et al. Supplementation with carotenoids inhibits singlet oxygen-mediated oxidation of human plasma low-density lipoprotein[J]. Journal of Agricultural and Food Chemistry, 1996, 44(8): 2306-2309. [50] Murphy T. Membranes as targets of ultraviolet radiation[J]. Physiologia Plantarum, 1983, 58(3): 381-388. [51] 康云艳, 郭世荣, 李娟, 等. 24-表油菜素内酯对低氧胁迫下黄瓜幼苗根系抗氧化系统的影响[J]. 中国农业科学, 2008, 41(1): 153-161. [52] Zhang J, Kirkham M. Antioxidant responses to drought in sunflower and sorghum seedlings[J]. New Phytologist, 1996, 132(3): 361-373. |