[1] Intergovernmental Panel on Climate Change. Climate change 2001: Impacts, adaptation and vulnerability of climate change, working group II report. London: Cambridge University Press, 2001. [2] Zhang Q, Gao G.The spatial and temporal features of drought and flood disasters in the past 50 years and monitoring and warning services in China. Science & Technology Review, 2004, (7): 21-24. 张强, 高歌. 我国近50年旱涝灾害时空变化及监测预警服务. 科技导报, 2004, (7): 21-24. [3] Ren L, Zhao X L, Xu J, et al. Varied morphological and physiological responses to drought stress among four tea Chrysanthemum cultivars. Acta Ecologica Sinica, 2015, 35(15): 5131-5139. 任磊, 赵夏陆, 许靖, 等. 4种茶菊对干旱胁迫的形态和生理响应. 生态学报, 2015, 35(15): 5131-5139. [4] Li Z, Wang X J, Peng D D, et al. Effects of Na+ on antioxidant defence and accumulation of osmoregulatory substances in white clover under water deficit stress. Acta Prataculturae Sinica, 2014, 23(5): 175-183. 李州, 王晓娟, 彭丹丹, 等. Na+对水分胁迫下白三叶抗氧化防御和有机渗透调节物质的影响. 草业学报, 2014, 23(5): 175-183. [5] Fu M M, Li X H, Li Q.Effect of drought stress on the germination of okra seed. Journal of Shanxi Agricultural Sciences, 2018, 46(3): 350-353. 付咪咪, 李鲜花, 李强. 干旱胁迫对黄秋葵种子萌发的影响. 山西农业科学, 2018, 46(3): 350-353. [6] Liu Y, Xu H, Wen X X, et al. Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. Journal of Integrative Agriculture, 2016, 15(12): 2759-2774. [7] Hu X Y, Hu T M, Li H X.Comparison of drought-resistance of Dichondra repens and Zoysia japonica at emergence stage. Pratacultural Science, 2006, 23(1): 89-92. 胡晓艳, 呼天明, 李红星. 草坪草马蹄金与结缕草种子萌发期抗旱性比较. 草业科学, 2006, 23(1): 89-92. [8] Jin Z M, Sha W.Study on drought resistance of Trifolium repens Linn seedlings. Northern Horticulture, 2010, (18): 50-52. 金忠民, 沙伟. 白三叶抗旱性生理的研究. 北方园艺, 2010, (18): 50-52. [9] Zhang Y, Peng Y, He X S.Effect of soaking seeds with betaine on seed germination characteristics of white clover (Trifolium repens L.) under the simulated drought stress. Chinese Journal of Grassland, 2014, 36(4): 31-37. 张艳, 彭燕, 何小双. 甜菜碱浸种对干旱胁迫下白三叶种子萌发特性的影响.中国草地学报, 2014, 36(4): 31-37. [10] Li Z, Peng Y, Zhang X Q, et al. Exogenous spermidine improves seeds germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules, 2014, 19: 18003-18024. [11] Hameed A, Iqbal N, Malik S A.Mannose-induced modulations in antioxidants, protease activity, lipid peroxidation, and total phenolics in etiolated wheat leaves. Journal of Plant Growth Regulation, 2009, 8: 58-65. [12] He C M, Yu Z M, Silva J A T, et al. DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response. Scientific Reports, 2017, 7: 41010. [13] Ai T B, Liao X H, Li R, et al. GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco. Zeitschrift für Naturforschung C, 2016, 71(7/8): 243-252. [14] Zou Q.Experimental guidance on plant physiology. Beijing: China Agricultural Press, 2000: 161-174. 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000: 161-174. [15] Blum A, Ebercon A.Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 1981, 21: 43-47. [16] Dhindsa R S, Dhindsa P P, Thorpe T A.Leaf senescence: Correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32: 93-101. [17] Giannopolities C N, Ries S K.Superoxide dismutase: I. occurrence in higher plants. Plant Physiology, 1977, 59: 309-314. [18] Chance B, Maehly A C.Assay of catalase and peroxidase. Methods in Enzymology, 1955, 2: 764-775. [19] Hao J J, Kang Z L, Yu Y.Experimental technique of plant physiology. Beijing: Chemical Industry Press, 2006. 郝建军, 康宗利, 于洋. 植物生理实验技术. 北京: 化学工业出版社, 2006. [20] Uchida A, Andre T I, Takashi H.Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163: 515-523. [21] Wang X Q, Qin S Y, Gao T H, et al.Basic biochemistry experiment. Beijing: Higher Education Press, 1999. 王秀奇, 秦淑媛, 高天慧, 等. 基础生物化学实验. 北京: 高等教育出版社, 1999. [22] Xia X J, Wang Y J, Zhou Y H, et al. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 2009, 150: 801-814. [23] Hameed A, Iqbal N.Chemo-priming with mannose, mannitol and H2O2 mitigate drought stress in wheat. Cereal Research Communications, 2014, 42(3): 450-462. [24] Zhu J H.Research on the changes of amylase activity during germination of some crops seeds. Journal of Ningbo Polytechnic, 2014, 18(3): 87-89, 93. 朱建华. 作物发芽种子淀粉酶活性变化的研究. 宁波职业技术学院学报, 2014, 18(3): 87-89, 93. [25] Yan E, Qiao Y M.Study of amylase activities in germinating seeds of two oat varieties. Pratacultural Science, 2006, 23(9): 96-98. 阎娥, 乔有明. 两燕麦品种种子萌发中淀粉酶活性变化的研究. 草业科学, 2006, 23(9): 96-98. [26] Li W R, Zhang S Q, Shan L.Seeds germination characteristics and drought tolerance of alfalfa and sorghum seedling under water stress. Acta Ecologica Sinica, 2009, 29(6): 3066-3074. 李文娆, 张岁岐, 山仑. 水分胁迫下紫花苜蓿和高粱种子萌发特性及幼苗耐旱性. 生态学报, 2009, 29(6): 3066-3074. [27] Pan M H, Li Z, Peng D D, et al. Effects of seed-soaking with spermidine on seed germination and starch metabolism of white clover (Trifolium repens L.) under osmotic stress. Plant Physiology Journal, 2014, 50(4): 426-432. 潘明洪, 李州, 彭丹丹, 等. 亚精胺浸种对渗透胁迫下白三叶种子萌发及淀粉代谢的影响. 植物生理学报, 2014, 50(4): 426-432. [28] Ji Y, Zhang X Q, Peng Y, et al. Effects of drought stress on the root growth and photosynthetic characters of Dactylis glomerata seedlings. Chinese Journal of Applied Ecology, 2013, 24(10): 2763-2769. 季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅幼苗根系生长及光合特性的影响. 应用生态学报, 2013, 24(10): 2763-2769. [29] Lang D M, Qin S J, Zhu Z T, et al. Effects of exogenous glucose on growth and root nitrogen metabolism in Malus baccata. Chinese Journal of Applied Ecology, 2018, 29(3): 797-804. 郎冬梅, 秦嗣军, 朱紫檀, 等. 外源葡萄糖对山定子生长及根系氮素代谢的影响. 应用生态学报, 2018, 29(3): 797-804. [30] Guo H J.Research progress on osmotic adjustment material under water stress. Journal of Anhui Agricultural Sciences, 2010, 38(15): 7750-7753. 郭华军. 水分胁迫过程中的渗透调节物质及其研究进展. 安徽农业科学, 2010, 38(15): 7750-7753. [31] Franklin G, Conceição L F, Kombrink E, et al. Xanthone biosynthesis in hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry, 2009, 70(1): 60-68. [32] Liu Y, Chen G L, Cai G F, et al. Growth hand osmoregulation substances accumulation of Glycyrrhiza uralensis seedling under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(11): 2259-2264. 刘艳, 陈贵林, 蔡贵芳, 等. 干旱胁迫对甘草幼苗生长和渗透调节物质含量的影响. 西北植物学报, 2011, 31(11): 2259-2264. [33] Wu X H, Feng J M.Effects of extraneous spermidine on antioxidant enzyme activities and other physiological characteristics of pumpkin seedlings under osmotic stress. Agricultural Research in the Arid Areas, 2017, 35(4): 255-262. 吴旭红, 冯晶旻. 外源亚精胺对渗透胁迫下南瓜幼苗抗氧化酶活性等生理特性的影响. 干旱地区农业研究, 2017, 35(4): 255-262. [34] Li Y, Zeng X E, Li H Y, et al. Effects of oligochitosan on the leaf physiological indices of Brassica napus L. under drought stress. Chinese Journal of Ecology, 2012, 31(12): 3080-3085. 李艳, 曾秀娥, 李洪艳, 等. 壳寡糖对干旱胁迫下油菜叶片生理指标的影响. 生态学杂志, 2012, 31(12): 3080-3085. [35] Marikovsky M, Ziv V, Nevo N, et al. Cu/Zn superoxide dismutase plays important role in immune response. The Journal of Immunology, 2003, 170(6): 2993-3001. [36] Zhao X Q, Liang T S, Zhao R Z.Effects of chitooligosaccharide on plant growth and antioxidant system in seedlings of wheat (Triticum aestivum L.) under PEG stress. Journal of Agricultural Science and Technology, 2018, 20(4): 20-28. 赵肖琼, 梁泰帅, 赵润柱. 壳寡糖对PEG 胁迫下小麦幼苗生长及抗氧化系统的影响. 中国农业科技导报, 2018, 20(4): 20-28. [37] Shen S Y, Wu Y X, Zheng Y S.Review on drought response in plants from phenotype to molecular. Current Biotechnology, 2017, 7(3): 169-176. 沈少炎, 吴玉香, 郑郁善. 植物干旱胁迫响应机制研究进展—从表型到分子. 生物技术进展, 2017, 7(3): 169-176. [38] Wang F Z, Wang Q B, Kwon S Y, et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology, 2005, 162(4): 465-472. |