[1] Li J K, Sun T, Wang Z, et al. Effects on mixture sowing ratio on the yield and quality of both vetch and oat in Tibet. Acta Agrestia Sinica, 2011, 19(5): 830-833. 李佶恺, 孙涛, 旺扎, 等. 西藏地区燕麦与箭筈豌豆不同混播比例对牧草产量和质量的影响. 草地学报, 2011, 19(5): 830-833. [2] Ji W Z.The study on improving yield effect for mix-sowing of oat and vetch on alpine artificial grassland in Tianzhu County in Gansu Province. Chinese Journal of Grassland, 2008, 30(5): 106-109. 姬万忠. 高寒地区燕麦与箭筈豌豆混播增产效应的研究. 中国草地学报, 2008, 30(5): 106-109. [3] Jiang H L, Zhang Q P, Shen Y Y.Effects of intercropping ratio on autumn-sowing oats/common vetch system on the Loess Plateau. Pratacultural Science, 2014, 31(2): 272-277. 蒋海亮, 张清平, 沈禹颖. 黄土高原旱塬区间作比例对燕麦/箭筈豌豆系统的影响. 草业科学, 2014, 31(2): 272-277. [4] Ma J, Zheng W, Zhu J R, et al. Comparative analysis of the production performance of oat-vetch mixture at different mowing stages. Xinjiang Agricultural Sciences, 2015, 52(8): 1547-1554. 马军, 郑伟, 朱婧蓉, 等. 燕麦与箭筈豌豆混播草地不同刈割时期生产性能的对比分析.新疆农业科学, 2015, 52(8): 1547-1554. [5] Chen G, Guo L M, Ren C Z, et al. Effects of two row spaces and intercropping on forage and crude protein yields of oat (Avena sativa L.) and common vetch (Vicia sativa L.). Acta Agronomica Sinica, 2011, 37(11): 2066-2074. 陈恭, 郭丽梅, 任长忠, 等. 行距及间作对箭筈豌豆与燕麦青干草产量和品质的影响. 作物学报, 2011, 37(11): 2066-2074. [6] Wang X, Zeng Z H, Zhu B, et al. Effect of different intercropping and mixture modes on forage yield and quality of oat and common vetch. Acta Agronomica Sinica, 2007, 33(11): 1892-1895. 王旭, 曾兆海, 朱波, 等. 箭筈豌豆与燕麦不同间作混播模式对产量和品质的影响. 作物学报, 2007, 33(11): 1892-1895. [7] Lithourgidis A S, Vasilakoglou I B, Dhima K V, et al. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios. Field Crops Research, 2006, 99(2): 106-113. [8] Dhima K V, Lithourgidis A S, Vasilakoglou I B, et al. Competition indices of common vetch and cereal intercrops in two seeding ratio. Field Crops Research, 2007, 100(2/3): 249-256. [9] Zhao C X, He W Q, Hu Y G, et al. Effect of intercropping or mixture and harvest time on forage yield and quality of oat and pea under low soil nitrogen environment. Agricultural Research in the Arid Areas, 2006, 24(5): 5-9. 赵彩霞, 何文清, 胡跃高, 等. 低氮环境下燕麦与箭筈豌豆间混作与刈割时间对饲草产量及质量特性的影响. 干旱地区农业研究, 2006, 24(5): 5-9. [10] Li J H, Qiao G H, Zhang X P, et al. Effect of mixed sowing of common vetch and rape on common vetch seed yield in Dazi of Tibet. China Herbivore Science, 2012, 32(5): 44-47. 李锦华, 乔国华, 张小甫, 等. 西藏达孜混播油菜对箭豌豆种子产量影响的研究. 中国草食动物科学, 2012, 32(5): 44-47. [11] Liu W H, Zhang Y J, Shi S L, et al. Soil enzyme activities in alpine naked oat-artificial grassland in response to fertilizer and legume mix levels. Acta Prataculturae Sinica, 2017, 26(1): 23-33. 刘文辉, 张英俊, 师尚礼, 等. 高寒区施肥和豆科混播水平对燕麦人工草地土壤酶活性的影响. 草业学报, 2017, 26(1): 23-33. [12] Liu W H, Zhang Y J, Shi S L, et al. Effect of variety, fertilization and mixture sowing on oat biomass allocation in the alpine cultivated pasture. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 398-407. 刘文辉, 张英俊, 师尚礼, 等. 高寒地区燕麦(Avena sativa L.)人工草地生物量分配对施肥和混播措施的响应. 植物营养与肥料学报, 2017, 23(2): 398-407. [13] Wit C T de, Bergh J P van den. Competition between herbage plants. Netherlands Journal of Agricultural Science, 1965, 13: 212-221. [14] Feng X M, Yang Y, Ren C Z, et al. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agronomica Sinica, 2015, 41(9): 1426-1434. 冯晓敏, 杨永, 任长忠, 等. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015, 41(9): 1426-1434. [15] Zhu S X, Yang Z Z.A study on superiorities in mixed cropping of alfalfa and siberian wildrye. Scientia Agriculture Sinica, 1992, 25(6): 63-68. 朱树秀, 杨志忠. 紫花苜蓿与老芒麦混播优势的研究. 中国农业科学, 1992, 25(6): 63-68. [16] Liu G C, Li L, Huang G B, et al. Intercropping advantage and contribution of above-ground and below-ground interactions in the barley-maize intercropping. Scientia Agriculture Sinica, 2005, 38(9): 1787-1795. 刘广才, 李隆, 黄高宝, 等. 大麦/玉米间作优势及地上部和地下部因素的相对贡献研究. 中国农业科学, 2005, 38(9): 1787-1795. [17] Yang P, Li J, Zhang Z K, et al. Effect of nitrogen application on intercropping advantages and crop interactions under an oil flax and soybean intercrop system. Acta Prataculturae Sinica, 2016, 25(3): 181-190. 杨萍, 李杰, 张中凯, 等. 施氮对胡麻/大豆间作体系作物间作优势及种间关系的影响. 草业学报, 2016, 25(3): 181-190. [18] Zheng W, Zhu J Z, Jianaerguli. A comprehensive evaluation of the productive performance of legume-grass mixture under different mixed sowing patterns. Acta Prataculturae Sinica, 2012, 21(6): 242-251. 郑伟, 朱进忠, 加娜尔古丽. 不同混播方式豆禾混播草地生产性能的综合评价.草业学报, 2012, 21(6): 242-251. [19] Strasser R J, Srivastava A, Tsimilli-Michael M.The fluorescence transient as a tool to characterize and screen photosynthetic samples//Yunus M, Pathre U, Mohanty P. Photosynthesis: Mechanisms, regulation and adaptation. London: Taylor and Francis Press, 2000: 445-483. [20] Appenroth K J, Augsten H.Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden -V. Demonstration of a calcium-requiring phase during phytochrome-mediated germination. Photochemistry and Photobiology, 1990, 52(1): 61-65. [21] Du Q F, Wang D J, Yu X Y, et al. The effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptake. Acta Prataculturae Sinica, 2016, 25(3): 225-233. 杜青峰, 王党军, 于翔宇, 等. 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响. 草业学报, 2016, 25(3): 225-233. [22] Chai Q, Qin A, Gan Y T, et al. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agronomy for Sustainable Development, 2014, 34: 535-543. [23] Jiao N Y, Li Y H, Yang X, et al. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chinese Journal of Applied Ecology, 2016, 27(9): 2959-2967. 焦念元, 李亚辉, 杨潇, 等. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016, 27(9): 2959-2967. [24] Yang F, Liao D P, Wu X L, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research, 2017, 203: 16-23. [25] Takim F O.Advantages of maize-cowpea intercropping over sole cropping through competition indices. Journal of Agriculture and Biodiversity Research, 2012, 1(4): 53-59. [26] Li Y Y, Hu H S, Cheng Y X, et al. Effects of interspecific interactions and nitrogen fertilization rates on above- and below-growth in faba bean/mazie intercropping system. Acta Ecologica Sinica, 2011, 31(6): 1617-1630. 李玉英, 胡汉升, 程摇序, 等. 种间互作和施氮对蚕豆/玉米间作生态系统地上部和地下部生长的影响. 生态学报, 2011, 31(6): 1617-1630. [27] Lü Y, Wu P T, Chen X L, et al. Resource competition in maize/soybean intercropping system. Chinese Journal of Applied Ecology, 2014, 25(1): 139-146. 吕越, 吴普特, 陈小莉, 等. 玉米/大豆间作系统的作物资源竞争. 应用生态学报, 2014, 25(1): 139-146. [28] Li Q Z, Yu C B, Hu H S, et al. Difference of nitrogen utilization and distribution of mineral nitrogen in soil profile by competitive abilities of intercropping systems. Plant Nutrition and Fertilizer Science, 2010, 16(4): 777-785. 李秋祝, 余常兵, 胡汉升, 等. 不同竞争强度间作体系氮素利用和土壤剖面无机氮分布差异.植物营养与肥料学报, 2010, 16(4): 777-785. [29] Chen Y X, Liu J, Chen X P, et al. Dry matter accumulation, yield and nitrogen use efficiency of crops rotation and intercropping systems in Sichuan. Journal of China Agricultural University, 2013, 18(6): 68-79. 陈远学, 刘静, 陈新平, 等. 四川轮套作体系的干物质积累、产量及氮素利用效率研究. 中国农业大学学报, 2013, 18(6): 68-79. [30] Yu H, Zheng W, Zhang X H, et al. Effects of spatial structure on the relationship of interspecific competition in legume-grass mixtures community. Journal of Xinjiang Agricultural University, 2015, 38(2): 87-92. 于辉, 郑伟, 张鲜花, 等. 群落空间结构对豆禾混播草地种间竞争关系的影响. 新疆农业大学学报, 2015, 38(2): 87-92. [31] Yang F, Lou Y, Liao D P, et al. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agronomica Sinica, 2015, 41(4): 642-650. 杨峰, 娄莹, 廖敦平, 等. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响.作物学报, 2015, 41(4): 642-650. [32] Zhu Y Q, Guan Z X, Zheng W, et al. Effects of species diversity and community structure on nitrogen use efficiency of mixed legume+grass pastures. Acta Prataculturae Sinica, 2018, 27(10): 1-14. 朱亚琼, 关正翾, 郑伟, 等. 混播种类和群体结构对豆禾牧草混播系统氮素利用效率的影响. 草业学报, 2018, 27(10): 1-14. [33] Karpenstein-Machan M, Stuelpnagel R.Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop. Plant and Soil, 2000, 218(1/2): 215-232. [34] Bouma T J, Nielsen K L, Vanhal J, et al. Rootsystem topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 2001, 15: 360-369. [35] Fitter A H.Architecture and biomass allocation as components of the plastic response of root system to soil heterogeneity//Caldwell M M, Peary R W. Exploitation of environmental heterogeneity by plants: Ecophysiological process above and belowground. San Diego: Academic Press, 1994: 305-324. [36] Guo J H, Zeng F J, Li C J, et al. Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert. Chinese Journal of Plant Ecology, 2014, 38(1): 36-44. 郭京衡, 曾凡江, 李尝君, 等. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略.植物生态学报, 2014, 38(1): 36-44. [37] Vercambre G, Pagès L, Doussan C, et al. Architectural analysis and synthesis of the plum tree root system in an orchard using a quantitative modelling approach. Plant and Soil, 2003, 251(1): 1-11. [38] Oppelt A L, Kurth W, Jentschke G, et al. Contrasting rooting patterns of some arid-zone fruit tree species from Botswana-II. Coarse root distribution. Agroforestry Systems, 2005, 64: 1-11. [39] Song Q H, Zhao C Z, Shi Y C, et al. Trade-off between root forks and link length of Melica przewalskyi on different aspects of slopes. Chinese Journal of Plant Ecology, 2015, 39(6): 577-585. 宋清华, 赵成章, 史元春, 等. 不同坡向甘肃臭草根系分叉数和连接长度的权衡关系. 植物生态学报, 2015, 39(6): 577-585. [40] Yang S.Feed analysis and feed quality detection technology. Beijing: China Agricultural University Press, 1999: 19-61. 杨胜. 饲料分析及饲料质量检测技术. 北京: 中国农业大学出版社, 1999: 19-61. [41] Wang P, Zhou D W, Jiang S C.Research on biological nitrogen fixation of grass-legume mixtures in a semi-arid area of China. Acta Prataculturae Sinica, 2010, 19(6): 276-280. 王平, 周道玮, 姜世成. 半干旱地区禾-豆混播草地生物固氮作用研究. 草业学报, 2010, 19(6): 276-280. [42] Yoneyama T, Yamada N, Kojima H, et al. Variations of natural 15N abundances in leguminous plants and nodule fractions. Plant Cell Physiology, 1984, 25: 1561-1565. [43] Jonathan W S.Introduction to plant population ecology. London: Longman, 1982: 147-155. [44] Zhang Z, Yang S, Du G J, et al. Effects of shade on the photosynthetic characteristics and chlorophyll fluorescence parameters of three kinds of leguminous forage. Acta Prataculturae Sinica, 2013, 22(10): 212-219. 张哲, 杨姝, 杜桂娟, 等. 遮阴对三种豆科牧草光合特性和叶绿素荧光参数的影响. 草业学报, 2013, 22(10): 212-219. [45] Sun Y, Chen J G, Zhang D G, et al. Influence of grazing on photosynthesis-light response and fluorescence parameters of four plants in alpine grassland. Pratacultural Science, 2013, 29(4): 577-585. 孙英, 陈建纲, 张德罡, 等. 放牧对高寒草地4种草光响应和荧光特性的影响. 草业科学, 2013, 29(4): 577-585. [46] Costa C, Dwyer L M, Hamilton R I.A sampling method for measurement of large root systems with scanner-based image analysis. Agronomy Journal, 2000, 92(4): 621-627. |