[1] Siege M R, Latch G M, Johnson M C. Fungal endophytes of grasses. Annual Review of Phytopathology, 1987, 25(1): 293-315. [2] Saikkonen K, Gundel P E, Helander M. Chemical ecology mediated by fungal endophytes in grasses. Journal of Chemical Ecology, 2013, 39(7): 962-968. [3] Song H, Nan Z B, Song Q Y, et al. Advances in research on Epichloё endophytes in Chinese native grasses. Frontiers in Microbiology, 2016, 7: 1399. [4] Li C J, Nan Z B, Paul V H, et al. A new Neotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China. Mycotaxon, 2004, 90(1): 141-147. [5] Nan Z B, Li C J. Neotyphodium in native grasses in China and observations on endophyte host interaction//Paul V H, Daprich P D. Proceedings of 4th international Neotyphodium grass interactions symposium. Soest: University of Paderborn, 2000: 41-50. [6] Liu T Y, Cao M H, Li G Z, et al. Diagnosis and treatment of animal drunken horse grass poisoning. Progress in Veterinary Medicine, 2006, 27(2): 116-117. 刘图雅, 曹敏慧, 李国忠, 等. 动物醉马草中毒的诊断和治疗. 动物医学进展, 2006, 27(2): 116-117. [7] Xia C, Christensen M J, Zhang X, et al. Effect of Epichloё gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant and Soil, 2018, 424(1/2): 555-571. [8] Ren A, Gao Y B, Wang W, et al. Photosynthetic pigments and photosynthetic products of endophyte-infected and endophyte-free Lolium perenne L. under drought stress conditions. Frontiers of Biology in China, 2006, 1(2): 168-173. [9] Xia C, Li N N, Zhang X Y, et al. Role of Epichloё endophytes in defense responses of cool-season grasses to pathogens: A review. Plant Disease, 2018, 102(11): 2061-2073. [10] Matsukura K, Shiba T, Sasaki T, et al. Dynamics of Neotyphodium uncinatum and N-formylloline in Italian ryegrass, and their relation to insect resistance in the field. Journal of Applied Microbiology, 2014, 116(2): 400-407. [11] Zhang X X. Research progress of improved resistance of the grass to the heave mental stress by endophyte. Pratacultural Science, 2014, 31(8): 1466-1474. 张兴旭. 内生真菌提高禾草耐重金属胁迫的研究进展. 草业科学, 2014, 31(8): 1466-1474. [12] Alboresi A, Gestin C, Leydecker M T, et al. Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant, Cell & Environment, 2005, 28(4): 500-512. [13] Ali-Rachedi S, Bouinot D, Wagner M H, et al. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: Studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219(3): 479-488. [14] Anuradha S, Rao S R. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 2003, 40: 29-32. [15] Pattanagul W. Exogenous abscisic acid enhances sugar accumulation in rice (Oryza sativa L.) under drought stress. Asian Journal of Plant Sciences, 2011, 10: 212-219. [16] Brady S M, McCourt P. Hormone cross-talk in seed dormancy. Journal of Plant Growth Regulation, 2003, 22(1): 25-31. [17] Fang Y, Wu J Y, Sun W C, et al. Inducing effects of exogenous ABA on seed germination and cold tolerance of winter rape seedlings. Agricultural Research in Arid Areas, 2014, 32(6): 70-74. 方彦, 武军艳, 孙万仓, 等. 外源ABA 浸种对冬油菜种子萌发及幼苗抗寒性的诱导效应. 干旱地区农业研究, 2014, 32(6): 70-74. [18] Xu L X, Yu J J, Han L B, et al. Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. Environmental and Experimental Botany, 2013, 89: 28-35. [19] Peleg Z, Blumwald E. Hormone balance and abiotic stress tolerance in crop plants. Current Opinion in Plant Biology, 2011, 14(3): 290-295. [20] Clay K. Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia, 1987, 73(3): 358-362. [21] Ruan Y H, Dong S K, Liu L J. Effects of exogenous abscisic acid on physiological characteristics in soybean flowering under drought stress. Soybean Science, 2012, 31(3): 385-388, 394. 阮英慧, 董守坤, 刘丽君. 干旱胁迫下外源脱落酸对大豆花期生理特性的影响. 大豆科学, 2012, 31(3): 385-388, 394. [22] Xie J J, Wang X, Cai J, et al. Effect of exogenous application of abscisic acid and jasmonic acid at seedling stage on post-anthesis drought stress and physiological mechanism in wheat. Journal of Triticeae Crops, 2018, 38(2): 221-229. 谢静静, 王笑, 蔡剑, 等. 苗期外源脱落酸和茉莉酸减缓小麦花后干旱胁迫的效应及生理机制. 麦类作物学报, 2018, 38(2): 221-229. [23] Zhang Z L, Zheng C X, Kang Y H, et al. Research progress of abscisic acid regulation underlying water transport in SPAC system. Water Saving Irrigation, 2016, 9: 143-147, 150. 张志亮, 郑彩霞, 康银红, 等. 激素ABA在SPAC水分传输中调节作用的研究进展. 节水灌溉, 2016, 9: 143-147, 150. [24] Hose E, Steudel E, Hartung W. Abscisic acid and hydraulic conductivity of maize roots: A study using cell- and root-pressure probes. Planta, 2000, 211(6): 874-882. [25] Morse L J, Faeth S H, Day T A. Neotyphodium interactions with a wild grass are driven mainly by endophyte haplotype. Functional Ecology, 2007, 21: 813-822. [26] Hamilton C E, Bauerle T L. A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Diversity, 2012, 54: 39-49. [27] Li C J, Nan Z B, Liu Y. Methodology of endophyte detection of drunken horse grass. Edible Fungi of China, 2008, 27(Supple 1): 16-19. 李春杰, 南志标, 刘勇. 醉马草内生真菌检测方法的研究. 中国食用菌, 2008, 27(增刊1): 16-19. [28] Wei D, Wang Y R. Germination testing methods on Achnatherum splendens seeds. Pratacultural Science, 1998, 15(4): 29-32. 卫东, 王彦荣. 芨芨草种子发芽检验方法的研究. 草业科学, 1998, 15(4): 29-32. [29] State Bureau of Quality and Technical Supervision. Forage seed test procedure germination test, GB/T 2930.4-2017. Beijing: China Standard Press, 2017. 国家质量技术监督局. 牧草种子检验规程发芽检验, GB/T 2930.4-2017. 北京: 中国标准出版社, 2017. [30] Faeth S H, Maajo L H, Kari T S. A sexual Neotyphodium endophytes in a native grass reduce competitive ability. Ecology Letters, 2004, (7): 304-313. [31] Hesse U, Schöberlein W, Wittenmayer L, et al. Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass and Forage Science, 2003, 58(4): 407-415. [32] Savchenko T, Kolla V A, Wang C Q. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiology, 2014, 164(3): 1151-1160. [33] Jacobsen J V, Pearce D W, Poole A T, et al. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiologia Plantarum, 2002, 115(3): 428-441. [34] Zhang X, Zhao C Q, Huang J, et al. Effect of exogenous abscisic acid and salicylic acid on germination and physiological characteristics of wheat seed. Chinese Journal of Applied and Environmental Biology, 2014, 20(1): 139-143. 张笑, 赵纯钦, 黄静, 等. 外源脱落酸, 水杨酸对小麦种子萌发及生理特性的影响. 应用与环境生物学报, 2014, 20(1): 139-143. [35] Mo Y R, Li P X, Ma Z F, et al. Effects of exogenous abscisic acid on the germination of pepper seeds from different varieties. Journal of Human Ecological Science, 2014, 1(4): 28-33. 莫云容, 李培欣, 马仲飞, 等. 外源ABA 对不同品种辣椒种子萌发的影响. 湖南生态科学学报, 2014, 1(4): 28-33. [36] Huang X H, Hu X W, Xu Z H, et al. Effects of exogenous hormones on the dormancy and germination of Leymus chinensis. Acta Prataculturae Sinica, 2013, 22(5): 183-189. 黄晓辉, 胡小文, 徐宗海, 等. 羊草种子休眠和萌发的激素调控研究. 草业学报, 2013, 22(5): 183-189. [37] Goggin D E, Steadman K J, Emery R J N, et al. ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud. Journal of Experimental Botany, 2009, 60(12): 3387-3396. [38] Ding J H, Li Y G, Tong J H. Effect of ABA on germination of rice seeds. Crop Research, 2012, 26(4): 328-330. 丁君辉, 李耀国, 童建华. 脱落酸对水稻种子萌发的影响. 作物研究, 2012, 26(4): 328-330. [39] Xiong M L, Dai X, Jian Y, et al. Advances in the study of abscisic acid-dependent and non-dependent signaling pathways. Genomics and Applied Biology, 2019, 45: 568-574. 熊孟连, 戴星, 简燕, 等. 脱落酸依赖的与非依赖的信号途径的研究进展. 基因组学与应用生物学, 2019, 45: 568-574. [40] Pinheiro C, Chaves M M. Photosynthesis and drought: Can we make metabolic connections from available data? Journal of Experimental Botany, 2010, 62(3): 869-882. [41] Endo A, Sawada Y, Takahashi H, et al. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiology, 2008, 147(4): 1984-1993. [42] De Battista J P, Bouton J H, Bacon C W, et al. Rhizome and herbage production of endophyte-removed tall fescue clones and populations. Agronomy Journal, 1990, 82(4): 651-654. [43] Liu D T, Jing Y P, Li D L, et al. Research advances in plant lateral root development. Plant Physiology Journal, 2013, 49(11): 1127-1137. 刘大同, 荆彦平, 李栋梁, 等. 植物侧根发育的研究进展. 植物生理学报, 2013, 49(11): 1127-1137. [44] Kavar T, Maras M, Kidric M, et al. Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Molecular Breeding, 2008, 21(2): 159-172. [45] Malinowski D, Leuchtmann A, Schmidt D, et al. Growth and water status in meadow fescue is affected by Neotyphodium and Phialophora species endophytes. Agronomy Journal, 1997, 89(4): 673-678. [46] Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: Effects, mechanisms and management, sustainable agriculture. Dordrecht: Springer, 2009: 153-188. [47] Li D, Nan H, Liang J, et al. Responses of nutrient capture and fine root morphology of subalpine coniferous tree Picea asperata to nutrient heterogeneity and competition. PLoS One, 2017, 12(11): https://doi.org/10.1371/journal.pone.0187496. [48] Signora L, De Smet I, Foyer C H, et al. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. The Plant Journal, 2001, 28(6): 655-662. [49] Himanen K, Boucheron E, Vanneste S, et al. Auxin-mediated cell cycle activation during early lateral root initiation. The Plant Cell, 2002, 14(10): 2339-2351. [50] Christmann A, Weiler E W, Steudle E, et al. A hydraulic signal in root-to-shoot signalling of water shortage. The Plant Journal, 2007, 52(1): 167-174. [51] Li S W, Leng Y, Feng L, et al. Involvement of abscisic acid in regulating antioxidative defense systems and IAA-oxidase activity and improving adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings under cadmium stress. Environment Science and Pollution Research, 2014, 21(1): 525-537. |