[1] Yin G L, Wu F, Tao R, et al. Effects of rhizospheren soil extraction from alfalfa-corn and alfalfa-wheat fields on alfalfa seed germination and seedling physiology and growth. Acta Prataculturae Sinica, 2018, 27(5): 153-161. 尹国丽, 吴芳, 陶茸, 等. 苜蓿轮作玉米\小麦土壤浸提液对苜蓿种子萌发和幼苗生理及生长的影响. 草业学报, 2018, 27(5): 153-161. [2] Li Y, Huang M.Pasture yield and soil water depletion of continuous growing alfalfa in the Loess Plateau of China. Agriculture Ecosystems & Environment, 2008, 124(1): 24-32. [3] Hegde R S, Miller D A.Allelopathy and autotoxicity in alfalfa: Characterization and effects of preceding crops and residue incorporation. Crop Science, 1990, 30(6): 1255-1259. [4] Qin S H, Cao L, Zhang J L, et al. Effect of rotation of leguminous plants on soil available nutrients and physical and chemical properties in continuous cropping potato field. Acta Agronomica Sinica, 2014, 40(8): 1452-1458. 秦舒浩, 曹莉, 张俊莲, 等. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响. 作物学报, 2014, 40(8): 1452-1458. [5] Li L, Liang X, Ye Y, et al. Effects of repeated swine manure applications on legacy phosphorus and phosphomonoesterase activities in a paddy soil. Biology & Fertility of Soils, 2015, 51(2): 167-181. [6] Wu F Z, Guo X, Liu S W, et al. Effect of summer catch mode on root zone soil enzyme activities and soil chemical properties of continuously monocropped cucumber. Journal of Northeast Agricultural University, 2014, 45(10): 29-34. 吴凤芝, 郭晓, 刘守伟, 等. 夏季填闲对连作黄瓜根区土壤酶活性及土壤化学性状的影响. 东北农业大学学报, 2014, 45(10): 29-34. [7] Lupwayi N Z, Rice W A, Clayton G W.Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biology & Biochemistry, 1998, 30(13): 1733-1741. [8] Guo Z, Kong C H, Wang J G, et al. Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biology & Biochemistry, 2011, 43(11): 2257-2264. [9] Rietz D N, Haynes R J.Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology & Biochemistry, 2003, 35(6): 845-854. [10] Acostamartínez V, Burow G, Zobeck T M, et al. Soil microbial communities and function in alternative systems to continuous cotton. Soil Science Society of America Journal, 2010, 74(4): 1181-1192. [11] Kang Y, Jing F, Sun W, et al. Soil microbial communities changed with a continuously monocropped processing tomato system. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2017, 68(2): 149-160. [12] Wang J S, Fan F F, Guo J, et al. Effects of different crop rotations on growth of continuous cropping sorghum and its rhizo-sphere soil micro-environment. Chinese Journal of Applied Ecology, 2016, 27(7): 2283-2291. 王劲松, 樊芳芳, 郭珺, 等. 不同作物轮作对连作高粱生长及其根际土壤环境的影响. 应用生态学报, 2016, 27(7): 2283-2291. [13] Ma K, Yang G L, Ma L, et al. Effects of intercropping on soil microbial communities after long-term potato monoculture. Acta Ecologica Sinica, 2016, 36(10): 2987-2995. 马琨, 杨桂丽, 马玲, 等. 间作栽培对连作马铃薯根际土壤微生物群落的影响. 生态学报, 2016, 36(10): 2987-2995. [14] Zhang L C, Peng P Y, Liao J C, et al. Soil bacterial community characteristics of rice-rice-rape crop rotation. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 276-280. 张立成, 彭沛宇, 廖健程, 等. 稻—稻—油菜轮作土壤细菌群落的特征. 应用与环境生物学报, 2018, 24(2): 276-280. [15] Chen D M, Duan Y Q, Yang Y H, et al. Influence of crop rotation on enzyme activities and fungal communities in flue-cured tobacco soil. Acta Ecologica Sinica, 2016, 36(8): 2373-2381. 陈丹梅, 段玉琪, 杨宇虹, 等. 轮作模式对植烟土壤酶活性及真菌群落的影响. 生态学报, 2016, 36(8): 2373-2381. [16] Li X Q, Zhang Y, Tian Z L, et al. Difference analysis of soil nutrients, enzymatic activities and microbial community structure between eggplant continuous cropping and rotation. Journal of Zhejiang University (Agricultural and Life Sciences), 2017, 43(5): 561-569. 李戌清, 张雅, 田忠玲, 等. 茄子连作与轮作土壤养分、酶活性及微生物群落结构差异分析. 浙江大学学报(农业与生命科学版), 2017, 43(5): 561-569. [17] Bao S D.Soil agro-chemistrical analysis (3rd ed.) Beijing: China Agriculture Press, 2000: 106-108. 鲍士旦. 土壤农化分析(3版). 北京: 中国农业出版社, 2000: 106-108. [18] Hu D Y, Mao G L, Xu X.Effects of different grass-crop rotation on edaphon and enzyme activity in soil. Acta Agriculturea Boreali-Occidentalis Sinica, 2014, 23(9): 106-113. 虎德钰, 毛桂莲, 许兴. 不同草田轮作方式对土壤微生物和土壤酶活性的影响. 西北农业学报, 2014, 23(9): 106-113. [19] Yao H, Jiao X, Wu F.Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant and Soil, 2006, 284(1/2): 195-203. [20] Jibrin M O, Lawal H M, Chindo P S.Influence of cover crops and tillage systems on nematode populations in a maize-cover crop intercrop. Archives of Phytopathology and Plant Protection, 2013, 47(6): 703-710. [21] Montiel-González C, Tapia-Torres Y, Souza V, et al. The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert. PeerJ, 2017, 5(11): e4007. [22] Zhou X, Yu G, Wua F.Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. European Journal of Soil Biology, 2011, 47(5): 279-287. [23] Song L P, Luo Z Z, Li L L, et al. Effects of lucerne-crop rotation patterns on soil aggregate stability and soil organic carbon. Chinese Journal of Eco-Agriculture, 2016, 24(1): 27-35. 宋丽萍, 罗珠珠, 李玲玲, 等. 苜蓿-作物轮作模式对土壤团聚体稳定性及有机碳的影响. 中国生态农业学报, 2016, 24(1): 27-35. [24] Grantinaievina L, Nikolajeva V, Rostoks N, et al.Impact of green manure and vermicompost on soil suppressiveness, soil microbial populations, and plant growth in conditions of organic agriculture of northern temperate climate. Organic amendments and soil suppressiveness in plant disease management. New York: Springer International Publishing, 2015: 381-399. [25] Davis J R, Huisman O C, Everson D O, et al. Verticillium wilt of potato: A model of key factors related to disease severity and tuber yield in Southeastern Idaho. American Journal of Potato Research, 2001, 78(4): 291-300. [26] Wei Q, Wang F, Chen W Y, et al. Soil physical characteristics on different degraded alpine grasslands in Maqu County in upper Yellow River. Bulletin of Soil and Water Conservation, 2010, 30(5): 16-21. 魏强, 王芳, 陈文业, 等. 黄河上游玛曲不同退化程度高寒草地土壤物理特性研究. 水土保持通报, 2010, 30(5): 16-21. [27] Dick R P, Pankhurst C, Doube B M, et al. Soil enzyme activities as integrative indicators of soil health. New York: CAB International, 1997: 121-156. [28] Zhang P P, Pu X Z, Zhang W F.Soil quality assessment under different cropping system and straw management in farmland of arid oasis region. Chinese Journal of Applied Ecology, 2018, 29(3): 839-849. 张鹏鹏, 濮晓珍, 张旺锋. 干旱区绿洲农田不同种植模式和秸秆管理下土壤质量评价. 应用生态学报, 2018, 29(3): 839-849. [29] Little K R, Rose M T, Jackson W R, et al. Do lignite-derived organic amendments improve early-stage pasture growth and key soil biological and physicochemical properties. Crop & Pasture Science, 2014, 65(9): 899-910. [30] Navarro-Noya Y E, Gómez-Acata S, Montoya-Ciriaco N, et al. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biology & Biochemistry, 2013, 65(10): 86-95. [31] Qiu M, Zhang R, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil. Biology & Fertility of Soils, 2012, 48(7): 807-816. [32] Liu J G, Zhang W, Li Y B, et al. Effects of long-term continuous cropping system of cotton on soil physical-chemical properties and activities of soil enzyme in oasis in Xinjiang. Scientia Agricultura Sinica, 2009, 42(2): 725-733. 刘建国, 张伟, 李彦斌, 等. 新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响. 中国农业科学, 2009, 42(2): 725-733. [33] Liang R B, Liang J, Qiao M F et al. Effects of simulated exudate C∶N stoichiometry on dynamics of carbon and microbial com-munity composition in a subalpine coniferous forest of western Sichuan, China. Chinese Journal of Plant Ecology, 2015, 39(5): 466-476. 梁儒彪, 梁进, 乔明锋, 等. 模拟根系分泌物C∶N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响. 植物生态学报, 2015, 39(5): 466-476. [34] Xiong W, Zhao Q, Zhao J, et al. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology, 2015, 70(1): 209-218. [35] Kragelund C, Levantesi C, Borger A, et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiology Ecology, 2007, 59(3): 671-682. [36] Zhang J, Zhang X, Liu Y, et al. Bacterioplankton communities in a high-altitude freshwater wetland. Annals of Microbiology, 2014, 64(3): 1405-1411. |