[1] Zhou Q Y, Liang Q L, Han L.Symptoms and pathogen detection of alfalfa virus disease. Pratacultural Science, 2016, 33(7): 1297-1305. 周其宇, 梁巧兰, 韩亮. 紫花苜蓿病毒病症状类型及病原检测. 草业科学, 2016, 33(7): 1297-1305. [2] Pan L Q, Zhang L, Tian J S, et al. Resistance evaluation of different alfalfa varieties to Fusarium sporotrichioides. Acta Prataculturae Sinica, 2016, 25(5): 95-101. 潘龙其, 张丽, 田进山, 等. 紫花苜蓿不同品种对拟枝孢镰刀菌的抗性评价. 草业学报, 2016, 25(5): 95-101. [3] Li H Y, Zheng Q S, Jiang C Q, et al. A comparison of stress effects between chloridion and sodium ion on grain amaranth seedlings under NaCl stress. Acta Prataculturae Sinica, 2010, 19(5): 63-70. 李洪燕, 郑青松, 姜超强, 等. 籽粒苋幼苗对不同盐离子胁迫响应的比较研究. 草业学报, 2010, 19(5): 63-70. [4] Abdalla M H, Elenany A W, Nafady N A, et al. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 2014, 169(1): 49-58. [5] Liu F, Xu Y, Han G, et al. Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant : Cell Physiology, 2018, 59(8): 1683-1694. [6] Jia T T, Chang W, Fan X X, et al. Effects of arbuscular mycorrhizal fungi on photosynthetic and chlorophyll fluorescence characteristics in Elaeagnus angustifolia seedlings under salt stress. Acta Ecologica Sinica, 2018, 38(4): 1337-1347. 贾婷婷, 常伟, 范晓旭, 等. 盐胁迫下AM真菌对沙枣苗木光合与叶绿素荧光特性的影响. 生态学报, 2018, 38(4): 1337-1347. [7] Cao Y P, Dai P, Dai S Y.Effects of arbuscular mycorrhiza fungi (AMF) on osmoregulation substances and antioxidant enzyme activities of asparagus plant under salt stress. Journal of Southwest University (Natural Science Edition), 2017, 39(5): 43-48. 曹岩坡, 代鹏, 戴素英. 丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响. 西南大学学报(自然科学版), 2017, 39(5): 43-48. [8] He H Q, Peng X Y, Tao S, et al. Effects of arbuscular mycorrhizal fungi on the growth and antioxidant enzyme activities of Leymus chinensis seedlings under salt-alkali-drought stress. Modern Agricultural Science and Technology, 2019, (12): 149-150. 何汉琼, 彭晓媛, 陶爽, 等. 丛枝菌根真菌对盐(碱)-旱交叉胁迫下羊草幼苗生长与抗氧化酶活性的影响. 现代农业科技, 2019, (12): 149-150. [9] Zhao X, Ye L, Na X W, et al. Influence of arbuscular mycorrhizal fungus on the osmotic adjustment substance and antioxidant system of Medicago sativa under salt-alkaline stress. Jiangsu Journal of Agricultural Sciences, 2017, 33(4): 782-787. 赵霞, 叶林, 纳学伟, 等. 盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响. 江苏农业学报, 2017, 33(4): 782-787. [10] Liu Z, Li Y, Ma L, et al. Coordinated regulation of arbuscular mycorrhizal fungi and soybean MAPK pathway genes improved mycorrhizal soybean drought tolerance. Molecular Plant-Microbe Interactions, 2015, 28(4): 408-419. [11] Li B S, Feng G, Lü J L.The effect of inoculated AM fungi on the disease index of corn southern leaf bligh. Plant Nutrition : Fertilizer Science, 2011, 17(6): 1500-1506. 李宝深, 冯固, 吕家珑. 接种丛枝菌根真菌对玉米小斑病发生的影响. 植物营养与肥料学报, 2011, 17(6): 1500-1506. [12] Cai H, Wang S, Dong L, et al. Effect of rhizobium symbiosis on the alkali resistance of alfalfa. Journal of Northeast Agricultural University, 2018, 49(12): 47-54. 才华, 王硕, 董理, 等. 根瘤菌共生对紫花苜蓿耐碱能力的影响. 东北农业大学学报, 2018, 49(12): 47-54. [13] Duan R Y, Wei X L, An C R, et al. Physiological response of Ormosia henryi seedlings with inoculating different rhizobium strains to moderate drought stress. Forest Research, 2018, (4): 61-69. 段如雁, 韦小丽, 安常蓉, 等. 花榈木幼苗接种不同根瘤菌对中度干旱胁迫的生理响应. 林业科学研究, 2018, (4): 61-69. [14] Pei X F, Guan D W, Li J, et al. Screening of drought-tolerance rhizobium and its influence on soybean. Soybean Science, 2012, 31(3): 420-424. 裴晓峰, 关大伟, 李俊, 等. 耐旱大豆根瘤菌的筛选及其接种效应. 大豆科学, 2012, 31(3): 420-424. [15] Becana M, Dalton D A, Moran J F, et al. Reactive oxygen species and antioxidants in legume nodules. Physiologia Plantarum, 2010, 109(4): 372-381 [16] Isabelle D, Nicolas P, Alain P, et al. Reactive oxygen species and nitric oxide control early steps of the legume rhizobium symbiotic interaction. Frontiers in Plant Science, 2016, 7(384): 454. [17] Kumar M, Yadav K, Thakur S K, et al. Effect of vesicular-arbuscular mycorrhizal fungi and Rhizobium inoculation on nodulation, root colonization, nitrogen fixation and yield of chick pea. Journal of the Indian Society of Soil Science, 1998, 46(3): 375-378. [18] Larimer A L, Clay K, Bever J D.Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95(4): 1045-1054. [19] Ding X D, Zhang L, Li S Y, et al. Effects of inoculations of glomus mosseae and/or brady rhizobium japonicum on formation and distribution of nodules and phosphorus uptake of soybean. Journal of Plant Nutrition and Fertilizer, 2012, 18(3): 662-669. 丁效东, 张林, 李淑仪, 等. 丛枝菌根真菌与根瘤菌接种对大豆根瘤分布及磷素吸收的影响. 植物营养与肥料学报, 2012, 18(3): 662-669. [20] Diao Y N, Zhao L M, Jin H R.Growth and physical Indexes leguminous plants inoculated with AM and rhizobium under Cd stress. Guizhou Agricultural Sciences, 2014, 42(12): 74-78. 刁亚南, 赵腊梅, 金海如. 镉胁迫下豆科植物接种AM真菌和根瘤菌的生长及生理指标变化. 贵州农业科学, 2014, 42(12): 74-78. [21] Meng C, Lu N, Chai Q.Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa in acidic soil. Pratacultural Science, 2017, 34(2): 352-360. 蒙程, 陆妮, 柴琦. 不同pH下接种AM真菌和根瘤菌对紫花苜蓿生长的影响. 草业科学, 2017, 34(2): 352-360. [22] Ikram B, Ocampo J A, García-Garrido J M. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. Journal of Experimental Botany, 2001, 51(353): 1969-1977. [23] Genre A, Russo G.Does a common pathway transduce symbiotic signals in plant-microbe interactions? Frontiers in Plant Science, 2016, 7. doi: 10.3389/fpls.2016.00096. [24] Wang S H, Wang C, Wang X J, et al. Molecular basics of tripartite symbiosis formed by rhizobia, arbuscular mycorrhizal (AM) fungi and legumes. Chinese Journal of Applied and Environmental Biology, 2008, (5): 131-135. 王树和, 王昶, 王晓娟, 等. 根瘤菌、丛枝菌根(AM)真菌与宿主植物共生的分子机理. 应用与环境生物学报, 2008, (5): 131-135. [25] Liu Q, Gao Y N, Liu X, et al. Effects of inoculation with arbuscular mycorrhizal fungi and rhizobia on growth of Medicago sativa under saline-alkaline stress. Acta Ecologica Sinica, 2018, 38(17): 6143-6155. 刘倩, 高娅妮, 柳旭, 等. 混合盐碱胁迫下接种丛枝菌根真菌和根瘤菌对紫花苜蓿生长的影响. 生态学报, 2018, 38(17): 6143-6155. [26] Wang W D, Yang P Z, Zhang P, et al. The effect of symbiotic rhizobium on the antioxidative and osmoregulatory capacity in alfalfa under salt stress. Acta Prataculturae Sinica, 2013, 22(5): 120-127. 王卫栋, 杨培志, 张攀, 等. 共生根瘤菌对NaCl胁迫下紫花苜蓿抗氧化和渗透调节能力的影响. 草业学报, 2013, 22(5): 120-127. [27] Song T T, Tian P, Yong Y Y, et al. Effect of symbiotic rhizobium on the content of organic acid in alfalfa under salt-alkali stress. Molecular Plant Breeding, 2016, (4): 1009-1015. 宋婷婷, 田璞, 勇月圆, 等. 根瘤共生对紫花苜蓿耐盐碱性及有机酸含量变化的影响. 分子植物育种, 2016, (4): 1009-1015. [28] Shockley F W, McGraw R L, Garrett H E. Growth and nutrient concentration of two native forage legumes inoculated with rhizobium and mycorrhuzain missour, USA. Agroforestry Systems, 2004, 60(2): 137-142. [29] Xavier L J C, Germida J J. Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biology and Fertility of Soils, 2003, 37(5): 261-267. [30] Catford J G.Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with nod factors. Journal of Experimental Botany, 2003, 54(386): 1481-1487. [31] Tsimilli-Michael M, Eggenberg P, Biro B, et al. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and azospirillum and rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Applied Soil Ecology, 2000, 15: 169-182. |