[1] Franklin K A.Shade avoidance. New Phytologist, 2008, 179(4): 930-944. [2] Pierik R, Whitelam G C, Voesenek L A, et al. Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signaling. The Plant Journal, 2004, 38: 310-319. [3] Franklin K A, Whitelam G C.Phytochromes and shade-avoidance responses in plants. Annals of Botany, 2005, 96(2): 169-175. [4] Nahar K, Hasanuzzaman M, Ahamed K U, et al. Plant responses and tolerance to high temperature stress: Role of exogenous phytoprotectants. Crop Production and Global Environmental Issues, 2015, 27: 385-435. [5] Yang Q H, Zheng C S.Effects of exogenous acetylsalicylic acid and calcium chloride on AsA-GSH cycle in chrysanthemum leaves under stress of low temperature and poor light. Journal of Shandong Agricultural University (Natural Science Edition), 2018, 49(3): 495-499. 杨庆贺, 郑成淑. 低温弱光胁迫下外源ASA与CaCl2对菊花叶片AsA-GSH循环的影响. 山东农业大学学报(自然科学版), 2018, 49(3): 495-499. [6] Du H Y, Li Q Z, Yang Q H, et al. Effects of spermidine on the content of osmoregulation substance and activity of proline metabolic enzyme in wheat seedling under osmotic stress. Journal of Triticeae Crops, 2014, 34(8): 1092-1097. 杜红阳, 李青芝, 杨青华, 等. 亚精胺对渗透胁迫下小麦幼苗渗透调节物质含量和脯氨酸代谢酶活性的影响. 麦类作物学报, 2014, 34(8): 1092-1097. [7] Zhou X H, Gu Z H, Xu H N, et al. The effects of exogenous ascorbic acid on photosynthetic characteristics in Oryza sativa L. under aluminum stress. Journal of Yangzhou University (Agricultural and Life Science Edition), 2015, 36(3): 73-78. 周小华, 谷照虎, 徐慧妮, 等. 外源抗坏血酸AsA对铝胁迫下水稻光合特性的影响. 扬州大学学报(农业与生命科学版), 2015, 36(3): 73-78. [8] Jaillais Y, Vert G.Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nature Cell Biology, 2012, 14(8): 788-790. [9] Fridman Y, Savaldi-Goldstein S.Brassinosteroids in growth control: How, when and where. Plant Science, 2013, 209: 24-31. [10] Janeczko A, Jana O K, Pociecha E, et al. Physiological effects and transport of 2,4-epibrassinolide in heat-stressed barley. Acta Physiologiae Plantarum, 2011, 33(4): 1249-1259. [11] Li N, Wang M Y, Sun J, et al. Effects of exogenous 2,4-epibrassinolide on growth and photosynthesis of tomato seedlings under low light stress. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(7): 1395-1402. 李宁, 王美月, 孙锦, 等. 外源2,4-表油菜素内酯对弱光胁迫下番茄幼苗生长及光合作用的影响. 西北植物学报, 2013, 33(7): 1395-1402. [12] Dai L F, Cui L J, Zhang Z X.Influence of shading treatment on growth of Jatropha curcas seedling. Journal of Anhui Agricultural Sciences, 2008, 36(14): 5729-5731. 戴凌峰, 崔令军, 张志翔. 遮阴处理对小桐子幼苗生长的影响. 安徽农业科学, 2008, 36(14): 5729-5731. [13] Qin F F, Shen Y X, Zhou J G, et al. Seedling morphology and growth responses of nine Medicago sativa varieties to shade conditions. Acta Prataculturae Sinica, 2010, 19(3): 204-208. 覃凤飞, 沈益新, 周建国, 等. 遮荫条件下9个紫花苜蓿品种苗期形态及生长响应. 草业学报, 2010, 19(3): 204-208. [14] Geng H Z.Alfalfa in China. Beijing: China Agriculture Press, 1995. 耿华珠. 中国苜蓿. 北京:中国农业出版社, 1995. [15] Gao J F.Plant physiology experiment instruction. Beijing: Higher Education Press, 2006. 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. [16] Gu L H, Pallardy S G, Tu K, et al. Reliable estimation of biochemical parameters from C3 leaf photosynthesis and intercellular carbon dioxide response curves. Plant Cell and Environment, 2010, 33(11): 1852-1874. [17] Qin S H, Li L L.Effects of shading on squash seedlings' morphological and photosynthetic physiological characteristics. Chinese Journal of Applied Ecology, 2016, 17(4): 653-656. 秦舒浩, 李玲玲. 遮光处理对西葫芦幼苗形态特征及光合生理特性的影响. 应用生态学报, 2016, 17(4): 653-656. [18] Foo E, Plattenl J D, Weller J L, et al. PhyA and cry1 act redundantly to regulate gibberellin levels during de-etiolation in blue light. Physiologia Plantarum, 2006, 127(1): 149-156. [19] Weller J L, Hecht V, Vander Schoor J K, et al. Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell, 2009, 21(3): 800-813. [20] He X Y, Ma J L, Zhang R Q, et al. Research progress on effects of low-light stress on plant growth. Nonwood Forest Research, 2011, 29(4): 131-136. 何小燕, 马锦林, 张日清, 等. 弱光胁迫对植物生长影响的研究进展. 经济林研究, 2011, 29(4): 131-136. [21] Zhu Y S, Feng H.Effect of low light density on growth angle and morphostructure of tomato seedling function leaves. Chinese Agricultural Science Bulletin, 2010, 26(19): 211-215. 朱延姝, 冯辉. 弱光对苗期番茄功能叶片生长角度和形态结构的影响. 中国农学通报, 2010, 26(19): 211-215. [22] Wardlaw I F, Moncur L, Patrick J W, et al. The response of wheat to high temperature following anthesis. li. Sucrose accumulation and metabolism by isolated kernels. Functional Plant Biology, 1995, 22(3): 399-407. [23] Hu Y X, Fang B, Li J Y.Promotive effect of brassinoste-raids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. The Plant Journal, 2000, 24(5): 693-701. [24] Gonzálezgarcía M P, Vilarrasablasi J, Zhiponova M.Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development, 2011, 138(5): 849-859. [25] Martins S, Montiel-Jorda A, Cayrel A, et al. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nature Communication, 2017, 8(1): 309. [26] Richardson A D, Duigan S P, Berlyn G P.An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 2002, 153(1): 185-194. [27] Osório M L, Osório J, Vieira A C, et al. Influence of enhanced temperature on photosynthesis, photooxidative damage, and antioxidant strategies in Ceratonia siliqua L. seedlings subjected to water deficit and rewatering. Photosynthetica, 2011, 49(1): 3-12. [28] Tewari A K, Tripathy B C.Temperature-stress-induced impairment of chlorophyll biosynthetic reaction in cucumber and wheat. Plant Physiology, 1998, 117(3): 851-858. [29] Zhan J, Wang L J, Huang W D.Effects of low light environment on the growth and photosynthetic characteristics of grape leaves. Journal of China Agricultural University, 2002, 7(3): 75-78. 战吉, 王利军, 黄卫东. 弱光环境对葡萄叶片生长及其在强光下光合特性的影响. 中国农业大学学报, 2002, 7(3): 75-78. [30] Morgan C L, Austin R B.Estimation of the light distribution between photosystem I and II in intact wheat leaves by fluorescence and photoacoustia measurements. Photosynthesis Research, 1986, 7(3): 257-267. [31] Zhou P Z.Effect of different ratio of chlorophyll a/b in chloroplast on the ability of reducing 2, 6-dichlorophenol and indophenol. Plant Physiology Journal, 1964, 1(2): 154-159. 周佩珍. 叶绿体中不同叶绿素a/b比例对还原2, 6二氯酚靛酚能力的影响. 植物生理学报, 1964, 1(2): 154-159. [32] Hayat S, Yadav S, Wani A S, et al. Comparative effect of 28-homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. Photosynthetica, 2011, 49(3): 397-404. [33] Sun Y J, Fu Y D, Du Y P, et al. Effects of different temperature and light treatments on photosynthetic system II in Vitis vinifera L. cv. cabernet sauvignon. Scientia Agricultura Sinica, 2013, 36(6): 1191-1200. 孙永江, 付艳东, 杜远鹏, 等. 不同温度/光照组合对“赤霞珠”葡萄叶片光系统功能的影响. 中国农业科学, 2013, 36(6): 1191-1200. [34] Schultz H R.Extension of a farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (Vitis vinifera L. cv White Riesling and Zin-fandel). Functional Plant Biology, 2003, 30(6): 673-687. [35] Taiz L, Zeiger E.Plant physiology. Sunderland: Sinauer Associates, Inc. 2010. [36] Xue W, Li X Y, Lin L S, et al. Effects of short time heat stress on photosystem II, Rubisco activities and oxidative radicals in Alhagi sparsifolia. Chinese Journal of Applied Ecology, 2011, 35(4): 441-451. 薛伟, 李向义, 林丽莎, 等. 短时间热胁迫对疏叶骆驼刺光系统II、Rubisco活性和活性氧化剂的影响. 应用生态学报, 2011, 35(4): 441-451. [37] Sui X L, Zhang B X, Zhang Z X, et al. Differences of photosynthesis and growth in seedlings of different peppers under weak light. Transactions of the CSAE, 2005, 21(supplement): 41-44. 眭晓蕾, 张宝玺, 张振贤, 等. 弱光条件下不同基因型辣椒幼苗光合与生长的差异. 农业工程学报, 2005, 21(增刊): 41-44. [38] Ehleringer J, Pearch R W.Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiology, 1983, 73(3): 555-559. [39] Chen Y H, Wang Y L, Zhu D F, et al. Mechanism of exogenous brassinolide in alleviating high temperature injury at panicle initiation stage in rice. Chinese Journal of Rice Science, 2019, 33(5): 457-466. 陈燕华, 王亚梁, 朱德峰, 等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究. 中国水稻科学, 2019, 33(5): 457-466. [40] Ibañes M, Fàbregas N, Chory J, et al. Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(32): 13630-13635. |