[1] Xu P. Grassland resources and their utilization in Xinjiang. Urumqi: Xinjiang Science and Technology and Health Publishing House, 1993. 许鹏. 新疆草地资源及其利用. 乌鲁木齐: 新疆科技卫生出版社, 1993. [2] Ren X X. The methodology of desert ecosystem services in monitoring and assessment research. Beijing: Chinese Academy of Forestry, 2012. 任晓旭. 荒漠生态系统服务功能监测与评估方法学研究. 北京: 中国林业科学研究院, 2012. [3] Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6578-6583. [4] Morgan J A W, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere. Journal of Experimental Botany, 2005, 56(417): 1729-1739. [5] Yang J, Zhou G Y, Tian Y Y, et al. Differential analysis of soil bacteria diversity in different mixed forests of Dalbergia odorifera. Acta Ecologica Sinica, 2015, 35(24): 8117-8127. 杨菁, 周国英, 田媛媛, 等. 降香黄檀不同混交林土壤细菌多样性差异分析. 生态学报, 2015, 35(24): 8117-8127. [6] Van Veen J A, Ladd J N, Amato M. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C(U)] glucose and [15N] (NH4)2SO4 under different moisture regimes. Soil Biology and Biochemistry, 1985, 17(6): 747-756. [7] Schutter M E, Dick R P. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Science Society of America Journal, 2000, 64(5): 1659-1668. [8] Balser T C, Firestone M K. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry, 2005, 73: 395-415. [9] Liu J H, Wang Z W, Hao D Y, et al. Effect of heavy grazing on the organization ability of main plant species and functional groups in a desert steppe. Chinese Journal of Grassland, 2018, 40(5): 85-92. 刘菊红, 王忠武, 郝敦元, 等. 重牧对荒漠草原主要植物种和功能群组织力的影响. 中国草地学报, 2018, 40(5): 85-92. [10] Dong Y Q, Sun Z J, An S Z, et al. Effect of short-term grazing exclusion on community characteristics and stability in Artemisia desert on the northern slopes of the Tianshan Mountains. Pratacultural Science, 2018, 35(5): 996-1003. 董乙强, 孙宗玖, 安沙舟, 等. 短期禁牧对天山北坡蒿类荒漠群落特征及其稳定性的影响. 草业科学, 2018, 35(5): 996-1003. [11] Jiang S S, Sun Z J, Yang J, et al. Effect of exclusion duration on the plant inter-specific relationship and community stability in Seriphidium transiliense desert grassland. Chinese Journal of Grassland, 2018, 40(3): 68-75. 江莎莎, 孙宗玖, 杨静, 等. 封育年限对伊犁绢蒿荒漠草地群落种间关系及稳定性的影响. 中国草地学报, 2018, 40(3): 68-75. [12] Guo H C, Yan C, Wei Y. Reproductive phenology and fruit-set pattern of Zygophyllum macroperum in the Junggar Desert, Xinjiang. Acta Ecologica Sinica, 2015, 35(17): 5738-5744. 郭红超, 严成, 魏岩. 准噶尔荒漠大翅霸王的生殖物候及结实格局. 生态学报, 2015, 35(17): 5738-5744. [13] Cao Y F, Li Y, Li C H, et al. The spatial distribution of soil microbes around a desert shrub of Haloxylon ammodendron. Acta Ecologica Sinica, 2016, 36(6): 1628-1635. 曹艳峰, 李彦, 李晨华, 等. 荒漠灌木梭梭(Haloxylon ammodendron)周围土壤微生物的空间分布. 生态学报, 2016, 36(6): 1628-1635. [14] Lü G F, Wu Y S, Li H, et al. Study on soil microbe quantities and enzyme activities of different desert steppe in Inner Mongolia. Journal of Inner Mongolia Normal University (Natural Science Edition), 2008, 37(6): 761-764. 吕桂芬, 吴永胜, 李浩, 等. 内蒙古不同类型荒漠草原土壤微生物数量及其酶活性研究. 内蒙古师范大学学报(自然科学汉文版), 2008, 37(6): 761-764. [15] China Vegetation Map Committee of the Chinese Academy of Sciences. 1/1000000 vegetation map of the People’s Republic of China. Beijing: Geological Publishing House, 2007. 中国科学院中国植被图编辑委员会. 1∶1000000中华人民共和国植被图. 北京: 地质出版社, 2007. [16] Xinjiang Comprehensive Investigation Team, The Chinese Academy of Sciences, Institute of Botany, The Chinese Academy of Sciences. Vegetation and utilization in Xinjiang. Beijing: Science Press, 1978. 中国科学院新疆综合考察队, 中国科学院植物研究所. 新疆植被及其利用. 北京: 科学出版社, 1978. [17] Lu R K. Soil agrochemical analysis. Beijing: China Agricultural Science and Technology Press, 2000. 鲁如坤. 土壤农化分析方法. 北京: 中国农业科学技术出版社, 2000. [18] Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316-322. [19] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5): 335-336. [20] Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B-Biological Sciences, 2005, 360: 1935-1943. [21] Zhu J Z. Grassland resources. Beijing: China Agriculture Press, 2010. 朱进忠. 草地资源学. 北京: 中国农业出版社, 2010. [22] Yin C H, Feng G, Tian C Y, et al. Variations of the fertile island effects beneath tamarisk in northern Taklamakan Desert, northwestern China and its implication to desertification process. Journal of Beijing Forestry University, 2008, 30(1): 52-57. 尹传华, 冯固, 田长彦, 等. 塔克拉玛干沙漠北缘柽柳灌丛肥岛效应的变化规律及其生态学意义. 北京林业大学学报, 2008, 30(1): 52-57. [23] Wu X D. Effect of grassland desertification on soil organic carbon stability and community succession of desert steppe in Ningxia. Yinchuan: Ningxia University, 2016. 吴旭东. 沙漠化对草地植物群落演替及土壤有机碳稳定性的影响. 银川: 宁夏大学, 2016. [24] Xu X Y, Yan P, Guo S J. The interception loss of rainfall by three sand-fixing shrubs at the fringe of Minqin Oasis. Journal of Desert Research, 2013, 33(1): 141-145. 徐先英, 严平, 郭树江. 干旱荒漠区绿洲边缘典型固沙灌木的降水截留特征. 中国沙漠, 2013, 33(1): 141-145. [25] Ding X J, Huang Y L, Jing R Y, et al. Bacterial structure and diversity of four plantations in the Yellow River Delta by high-throughput sequencing. Acta Ecologica Sinica, 2018, 38(16): 5857-5864. 丁新景, 黄雅丽, 敬如岩, 等. 基于高通量测序的黄河三角洲4种人工林土壤细菌结构及多样性研究. 生态学报, 2018, 38(16): 5857-5864. [26] Bachar A, Al-Ashhab A, Soares MI, et al. Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology, 2010, 60(2): 453-461. [27] Wang X B. The spatial pattern of soil microbial communities and its driving mechanism in the grassland of Northern China. Beijing: University of Chinese Academy of Sciences, 2015. 王晓波. 我国北方草地土壤微生物群落的空间格局及其驱动机制. 北京: 中国科学院大学, 2015. [28] Xie X H, Liu N, Yang B, et al. Comparison of microbial community in hydrolysis acidification reactor depending on different structure dyes by illumina MiSeq sequencing. International Biodeterioration and Biodegradation, 2016, 111: 14-21. [29] Pointing S B, Chan Y K, Lacap D C, et al. Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(47): 19964-19969. [30] Fierer N, Leff J W, Adams B J, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21390-21395. [31] Lauber C L, Strickland M S, Bradford M A, et al. The influence of soil, properties on the structure of bacterial and fungal communities across land-use types. Soil Biology & Biochemistry, 2008, 40: 2407-2415. [32] Chu H Y, Fierer N, Lauber C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environment Microbiology, 2010, 12(11): 2998-3006. [33] Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils. Environment Microbiology, 2011, 13(6): 1642-1654. |