[1] Wu J F, Song M S, Xu X H, et al. Prospects and advances of comprehensive utilization of electrolytic manganese residue. Chinese Journal of Environmental Engineering, 2014, 8(7): 2645-2652. 吴建锋, 宋谋胜, 徐晓虹, 等. 电解锰渣的综合利用进展与研究展望. 环境工程学报, 2014, 8(7): 2645-2652. [2] Fan X, Luo J, Yang M, et al. Electrolytic manganese industry parsing the prevention and control of environmental pollution and reasonable advice. China’s Manganese Industry, 2016, 34(3): 136-137. 樊欣, 罗静, 杨梦, 等. 电解金属锰行业环境污染及合理防治建议解析. 中国锰业, 2016, 34(3): 136-137. [3] Zhu Z G. A review and prospect of China’s electrolytic manganese industry in the 2017. China’s Manganese Industry, 2018, 36(1): 1-5. 朱志刚. 2017年中国电解锰工业回顾及未来展望. 中国锰业, 2018, 36(1): 1-5. [4] Huang X J, Jiang C S, Hao Q J. Assessment of heavy metal pollutions in soils and bioaccumulation of heavy metals by plants in Rongxi manganese mineland of Chongqing. Acta Ecologica Sinica, 2014, 34(15): 4201-4211. 黄小娟, 江长胜, 郝庆菊. 重庆溶溪锰矿区土壤重金属污染评价及植物吸收特征. 生态学报, 2014, 34(15): 4201-4211. [5] Lu F, Chen M, Chen L L. Characteristics of heavy metal pollution in manganese residues of electrolytic manganese in Songtao, Guizhou and its toxic effects on plant growth. Science Technology and Engineering, 2018, 18(5): 124-129. 陆凤, 陈淼, 陈兰兰. 贵州松桃某电解锰企业锰渣重金属污染特征及对植物生长的毒性效应. 科学技术与工程, 2018, 18(5): 124-129. [6] Xu F Y, Jiang L H, Dan Z G, et al. Water balance analysis and wastewater recycling investigation in electrolytic manganese industry of China-A case study. Hydrometallurgy, 2014, 149: 12-22. [7] Shu J C, Liu R L, Liu Z H, et al. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue. Environmental Science & Pollution Research, 2015, 22(20): 16004-16013. [8] Ma Z L, Feng C S. Comparative advantage and strategic potential of energy grass development. Soil and Water Conservation in China, 2016, (4): 22-25, 43. 马志林, 冯长松. 能源草发展的比较优势和战略潜力研究. 中国水土保持, 2016, (4): 22-25, 43. [9] Hou X C, Fan X F, Wu J Y, et al. Potentiality of herbaceous bioenergy plants in remediation of soil contaminated by heavy metal. Chinese Journal of Grassland, 2012, 34(1): 59-64, 76. 侯新村, 范希峰, 武菊英, 等. 草本能源植物修复重金属污染土壤的潜力. 中国草地学报, 2012, 34(1): 59-64, 76. [10] Witters N, Mendelsohn R O, Slycken S V, et al. Phytoremediation, a sustainable remediation technology? Conclusions from a case study.I: Energy production and carbon dioxide abatement. Biomass and Bioenergy, 2012, 39: 454-469. [11] Zhang X F, Tian C, Gao B. Heavy metal tolerance and phytoremediation potential of energy crop, king grass. Chinese Journal of Environmental Engineering, 2017, 11(5): 3204-3213. 张杏锋, 田超, 高波. 能源植物皇草对重金属的耐性及修复潜力. 环境工程学报, 2017, 11(5): 3204-3213. [12] Zhang M, Yang C, Jing Y, et al. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge. Waste Management, 2016, 58: 316-323. [13] Chen L L, Ma X J, Lu F, et al. Characteristics of heavy metals in manganese slag and its toxic effects on seeds in typical manganese ore areas of Guizhou Province. Journal of Hebei Agricultural University, 2019, 42(4): 56-62. 陈兰兰, 马先杰, 陆凤, 等. 贵州典型锰矿区锰渣重金属含量特征及对种子萌发的毒性效应. 河北农业大学学报, 2019, 42(4): 56-62. [14] Wang J Z, Hu W M, Li D Y, et al. Growth and physiological responses of perennial ryegrass to electrolytic manganese residue stress. Northern Horticulture, 2019, (17): 72-76. 王加真, 胡万明, 李大勇, 等. 电解锰渣液处理下多年生黑麦草的生长与生理响应. 北方园艺, 2019, (17): 72-76. [15] Lü Y, Li J, Ye H P, et al. Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria. Journal of Cleaner Production, 2019, 228: 901-909. [16] Zhou Q, Zeng Q L, Huang X H, et al. Effects of acid rain on seed germination of various acid-fast plant. Acta Ecologica Sinica, 2004, 24(9): 2029-2036. 周青, 曾庆玲, 黄晓华, 等. 三类抗性种子萌发对酸雨胁迫响应. 生态学报, 2004, 24(9): 2029-2036. [17] Ao C H, Liu F, Luo Y. Growing status of various grasses during seeding stages in the zinc smelting slag in Northwestern Guizhou. Pratacultural Science, 2013, 30(8): 1212-1216. 敖成红, 刘方, 罗洋. 黔西北炼锌废渣基质上不同草种苗期生长状况. 草业科学, 2013, 30(8): 1212-1216. [18] Wang Y Z, Huang X, Cai L P, et al. Effects of soil particle composition on seed germination and seeding growth of Paspalum wettsteinii under different temperatures. Acta Prataculturae Sinica, 2018, 27(9): 45-55. 王玉珍, 黄晓, 蔡丽平, 等. 不同温度条件下土壤颗粒组成对宽叶雀稗种子发芽与幼苗生长的影响. 草业学报, 2018, 27(9): 45-55. [19] He W. Research on the repair effect of woody plant after the improvement of manganese slag. Changsha: Central South University of Forestry and Technology, 2018. 何蔚. 锰矿渣基质改良下木本植物修复效果研究. 长沙: 中南林业科技大学, 2018. [20] Liu R, Liu F, Shang Z S. Release characteristics of heavy metals of different manganese slags under the conditions of release and its effect on plant growth of seedlings. Environmental Science Survey, 2011, 30(1): 5-9. 刘荣, 刘方, 商正松. 不同类型锰矿废渣浸提条件下重金属释放特征及其对植物种苗生长的影响. 环境科学导刊, 2011, 30(1): 5-9. [21] Chen R, Liu F, Li Y. Adsorption and fixation of manganese in electrolytic manganese slag by nano-titanium oxide attached natural clay materials. Environmental Protection of Chemical Industry, 2019, 39(4): 442-446. 陈然, 刘方, 李艳. 天然黏土材料附着纳米TiO2对电解锰渣中锰的吸附固定. 化工环保, 2019, 39(4): 442-446. [22] Chen G, Li S. Plant physiology experiments. Beijing: Higher Education Press, 2016. 陈刚, 李胜. 植物生理学实验. 北京: 高等教育出版社, 2016. [23] Wei Z Z, An Z N, Zhang L, et al. Effects of simulated acid rain on seed germination and seeding growth of 4 turf-grass seeds. Seed, 2019, 38(2): 93-97. 魏祯祯, 安子宁, 张蕾, 等. 模拟酸雨对4种草坪草种子萌发和幼苗生长的影响. 种子, 2019, 38(2): 93-97. [24] Zhang H J, Zhang N, Yang R C, et al. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA4 interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 2014, 57(3): 269-279. [25] Zhang W P, Yang Z, Wu P J, et al. Effect of exopolysaccharides of lactic acid bacteria on seed germination and seedling growth of rice under different stress. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 138-147. 张文平, 杨臻, 吴佩佳, 等. 乳酸菌胞外多糖对逆境胁迫下水稻种子萌发及幼苗生长的影响. 核农学报, 2019, 33(1): 138-147. [26] Xu Z P, Wan T, Cai P, et al. Effects of PEG simulated drought stress on germination and physiological properties of Apocynum venetum seeds. Chinese Journal of Grassland, 2015, 37(5): 75-80. 徐振朋, 宛涛, 蔡萍, 等. PEG模拟干旱胁迫对罗布麻种子萌发及生理特性的影响. 中国草地学报, 2015, 37(5): 75-80. [27] Wang Y, Wei F S, Yang G Z. Elemental chemistry of soil environment. Beijing: China Environmental Science Press, 1995. 王云, 魏复盛, 杨国治. 土壤环境化学元素. 北京: 中国环境科学出版社, 1995. [28] He Y L. Mn in soils of Guizhou. Guizhou Science, 1995, (4): 20-23. 何亚琳. 贵州土壤中的锰. 贵州科学, 1995, (4): 20-23. [29] Xiao Z H, Li X H, Pan G, et al. Effects of manganese stress on seed germination, and seedling physiological and biochemical characteristics of Cleome viscosa. Acta Prataculturae Sinica, 2019, 28(12): 75-84. 肖泽华, 李欣航, 潘高, 等. 锰胁迫对黄花草种子萌发及幼苗生理生化特征的影响. 草业学报, 2019, 28(12): 75-84. [30] Ministry of Ecology and Environment of the People’s Republic of China. Soil environmental quality risk control standard for soil contamination of agricultural land, GB15618-2018. Beijing: China Environmental Science Press, 2018. 生态环境部. 土壤环境质量农用地土壤污染风险管控标准(试行), GB15618-2018. 北京: 中国环境科学出版社, 2018. [31] Bateman A M, Erickson T E, Merritt D J, et al. Inorganic soil amendments alter seedling performance of native plant species in post-mining arid zone rehabilitation. Journal of Environmental Management, 2019, 241: 179-186. [32] Cao C, Liang Q W, Tian Y, et al. Adsorption and slow-release effect of diatomite and modified sepiolite on NPK. Chinese Agricultural Science Bulletin, 2016, 32(18): 136-141. 曹畅, 梁绮雯, 田宇, 等. 硅藻土、改性海泡石对氮磷钾吸附和缓释作用的研究. 中国农学通报, 2016, 32(18): 136-141. [33] Yang S X, Li F M, Peng X Z, et al. Effects of amendments with different C/N/P ratios on plant and soil properties of a Pb-Zn mine tailings. Environmental Science, 2019, 40(9): 4253-4261. 杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地植被与土壤性质的影响. 环境科学, 2019, 40(9): 4253-4261. [34] Sun J M, Bu X L, Wu Y B, et al. Effects of biochar application on the growth of Robinia pseudoacacia L. seedlings and soil properties in limestone soil in a karst mountain site. Chinese Journal of Ecology, 2016, 35(12): 3250-3257. 孙嘉曼,卜晓莉, 吴永波, 等. 喀斯特山地石灰土施用生物炭对刺槐幼苗生长和土壤特性的影响. 生态学杂志, 2016, 35(12): 3250-3257. [35] Ye L Y, Wu Q, Shui D J, et al. Effects of biochar on seed germination and seedings of turnip under copper stress. Northern Horticulture, 2018, (8): 59-63. 叶利勇, 吴琦, 水徳聚, 等. 生物炭对铜胁迫下盘菜种子萌发及幼苗生长的影响. 北方园艺, 2018, (8): 59-63. [36] Xu Y M, Wang C Q, Wu J X, et al. Effects of Mn2+ and Pb2+ on seed germination and seeding growth of Elymus nutans. Acta Prataculturae Sinica, 2018, 27(3): 194-200. 徐雅梅, 王传旗, 武俊喜, 等. Mn2+、Pb2+对野生垂穗披碱草种子萌发与幼苗生长的影响. 草业学报, 2018, 27(3): 194-200. [37] Zhang Y N, Lei L, Xia B. Effects of drought stress and rewatering on seeding growth and physiological characteristics of Lysimachia davurica. Pratacultural Science, 2016, 33(9): 1681-1689. 张彦妮, 雷蕾, 夏斌. 干旱胁迫及复水对黄连花幼苗生长和生理特性的影响. 草业科学, 2016, 33(9): 1681-1689. [38] Zhang J X, He Y M, Li B, et al. Effects of three clay minerals on the growth and heavy metal content in Vicia faba. Journal of Agro-Environment Science, 2019, 38(4): 845-854. 张金秀, 何永美, 李博, 等. 三种黏土矿物对蚕豆生长和重金属含量的影响. 农业环境科学学报, 2019, 38(4): 845-854. [39] Aksakal E L, Angin I, Oztas T. Effects of diatomite on soil physical properties. Catena, 2012, 88(1): 1-5. [40] Du C Y, Wang P L, Du J L, et al. Influence of fixed addition of biochar, zeolite and bentonite on growth and Cd, Pb, Zn uptake by maize. Ecology and Environmental Sciences, 2019, 28(1): 190-198. 杜彩艳, 王攀磊, 杜建磊, 等. 生物炭、沸石与膨润土混施对玉米生长和吸收Cd、Pb、Zn的影响研究. 生态环境学报, 2019, 28(1): 190-198. |