草业学报 ›› 2022, Vol. 31 ›› Issue (5): 26-39.DOI: 10.11686/cyxb2021120
王亚妮1,3(), 胡宜刚1(), 王增如1, 李以康2, 张振华2, 周华坤2
收稿日期:
2021-03-29
修回日期:
2021-04-26
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
胡宜刚
作者简介:
Corresponding author. E-mail: huyig@lzb.ac.cn基金资助:
Ya-ni WANG1,3(), Yi-gang HU1(), Zeng-ru WANG1, Yi-kang LI2, Zhen-hua ZHANG2, Hua-kun ZHOU2
Received:
2021-03-29
Revised:
2021-04-26
Online:
2022-05-20
Published:
2022-03-30
Contact:
Yi-gang HU
摘要:
土壤微生物群落特征指示着草地的质量和健康状况。本研究以青海省贵南县的天然草地(NG)、沙化草地(DG)、草本人工恢复草地(AG)和灌木人工恢复草地(AS)4种草地类型为研究对象,采用qPCR和Illumina MiSeq高通量扩增子测序技术研究了土壤细菌群落生物量、多样性及其结构的变化,结合植被和土壤属性剖析了高寒草地土壤细菌群落演变的关键影响因子及其贡献。结果表明:草地沙化显著(P<0.05)降低了土壤细菌群落的生物量和α多样性,人工植被重建则促进了土壤细菌群落生物量和α多样性的恢复,22年后基本达到未退化前的水平。草地沙化显著(P<0.05)增加了芽单胞菌门(Gemmatimonadota)的相对丰度,而变形菌门(Proteobacteria)和浮霉菌门(Planctomycetota)的相对丰度则显著降低(P<0.05);人工植被重建促进了优势细菌门逐渐向NG方向演变,22年后绝大部分优势细菌的相对丰度基本恢复到未退化之前的状态。然而,DG、AG和AS与NG的土壤细菌群落结构相似性不高,而AG和AS的群落结构则高度相似。土壤细菌群落结构与绝大多数植被和土壤理化指标显著 (P<0.05)正相关,植被属性对其群落结构变化的解释度(10.0%)比土壤物理属性(6.3%)和化学属性(1.9%)更高,植被与土壤所有指标共解释了72.0%的土壤细菌群落结构的变化,表明植被和土壤通过相互作用共同决定了高寒草地土壤细菌群落结构的演变。因此,加强对植被和土壤的保护,防止草地退化,并对沙化草地进行人工植被重建,对于保护和恢复青藏高原高寒草地土壤细菌群落具有重要的生态意义,而选择利用灌木或草本进行人工植被重建对表层土壤细菌群落的影响区别不大。
王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39.
Ya-ni WANG, Yi-gang HU, Zeng-ru WANG, Yi-kang LI, Zhen-hua ZHANG, Hua-kun ZHOU. Impacts of desertification and artificial revegetation on soil bacterial communities in alpine grassland[J]. Acta Prataculturae Sinica, 2022, 31(5): 26-39.
图1 不同草地类型景观和稀释曲线NG: 天然草地Natural grassland; DG: 沙化草地Desertified grassland; AG: 草本人工恢复草地Grass-based artificial grassland; AS: 灌木人工恢复草地Shrub-based artificial grassland.下同The same below.
Fig.1 The view of different alpine grasslands and rarefaction curves
指标Index | 天然草地NG | 沙化草地DG | 草本人工恢复草地AG | 灌木人工恢复草地AS |
---|---|---|---|---|
植被盖度PC (%) | 61. 67±2.42a | 0b | 59.00±1.63a | 54.95±2.05a |
植物物种丰富度PR (%) | 12.60±1.29a | 0c | 7.40±0.75b | 10.80±0.37a |
植物香农指数PS (%) | 2.41±0.14a | 0b | 1.90±0.18a | 2.28±0.04a |
植物地上生物量Abs (g·m-2) | 167.38±19.45a | 0b | 104.75±9.39a | 344.51±79.67a |
土壤水分SM (%) | 8.36±0.21a | 5.42±0.50b | 8.28±0.13a | 7.32±0.29a |
土壤容重BD (g·m-3) | 124.04±2.00c | 148.78±1.70a | 139.59±1.31b | 141.34±1.81b |
pH | 8.37±0.03b | 8.85±0.03a | 8.71±0.05a | 8.66±0.05a |
电导率EC (us·cm-1) | 161.20±3.31a | 113.42±3.03c | 132.92±1.71b | 136.32±1.78b |
土壤总有机碳TOC (%) | 0.77±0.06b | 0.37±0.03c | 0.74±0.02b | 0.97±0.03a |
土壤全氮TN (%) | 0.06±0.00a | 0.01±0.00b | 0.02±0.00b | 0.04±0.00a |
土壤全磷TP (g·kg-1) | 0.49±0.01a | 0.44±0.02b | 0.44±0.01b | 0.39±0.01c |
土壤有效磷AP (mg·kg-1) | 4.31±0.27b | 2.75±0.37b | 4.40±0.50b | 6.56±0.55a |
速效钾AK (mg·kg-1) | 251.00±3.32a | 173.20±6.54c | 183.20±7.37c | 224.80±7.30b |
硝态氮NO3--N (mg·kg-1) | 1.14±0.09a | 0.50±0.02c | 1.23±0.06a | 0.82±0.01b |
铵态氮NH4+-N (mg·kg-1) | 0.40±0.09b | 0.86±0.02a | 0.46±0.08b | 0.87±0.05a |
表1 不同草地类型植被和土壤特性
Table 1 Vegetation and soil physiochemical properties in different grasslands
指标Index | 天然草地NG | 沙化草地DG | 草本人工恢复草地AG | 灌木人工恢复草地AS |
---|---|---|---|---|
植被盖度PC (%) | 61. 67±2.42a | 0b | 59.00±1.63a | 54.95±2.05a |
植物物种丰富度PR (%) | 12.60±1.29a | 0c | 7.40±0.75b | 10.80±0.37a |
植物香农指数PS (%) | 2.41±0.14a | 0b | 1.90±0.18a | 2.28±0.04a |
植物地上生物量Abs (g·m-2) | 167.38±19.45a | 0b | 104.75±9.39a | 344.51±79.67a |
土壤水分SM (%) | 8.36±0.21a | 5.42±0.50b | 8.28±0.13a | 7.32±0.29a |
土壤容重BD (g·m-3) | 124.04±2.00c | 148.78±1.70a | 139.59±1.31b | 141.34±1.81b |
pH | 8.37±0.03b | 8.85±0.03a | 8.71±0.05a | 8.66±0.05a |
电导率EC (us·cm-1) | 161.20±3.31a | 113.42±3.03c | 132.92±1.71b | 136.32±1.78b |
土壤总有机碳TOC (%) | 0.77±0.06b | 0.37±0.03c | 0.74±0.02b | 0.97±0.03a |
土壤全氮TN (%) | 0.06±0.00a | 0.01±0.00b | 0.02±0.00b | 0.04±0.00a |
土壤全磷TP (g·kg-1) | 0.49±0.01a | 0.44±0.02b | 0.44±0.01b | 0.39±0.01c |
土壤有效磷AP (mg·kg-1) | 4.31±0.27b | 2.75±0.37b | 4.40±0.50b | 6.56±0.55a |
速效钾AK (mg·kg-1) | 251.00±3.32a | 173.20±6.54c | 183.20±7.37c | 224.80±7.30b |
硝态氮NO3--N (mg·kg-1) | 1.14±0.09a | 0.50±0.02c | 1.23±0.06a | 0.82±0.01b |
铵态氮NH4+-N (mg·kg-1) | 0.40±0.09b | 0.86±0.02a | 0.46±0.08b | 0.87±0.05a |
图2 不同草地类型土壤细菌群落生物量和多样性指数***表示不同草地类型之间的显著性差异(P<0.001)。*** dominates significant differences among different grasslands at P<0.001.
Fig.2 Soil bacterial community biomass and diversity indices in different alpine grasslands
门类 Phylum | 相对丰度 Relative abundance (%) | P 值 P value | 退化比例 Degradation proportion (%) | 恢复比例 Recovery proportion (%) | ||||
---|---|---|---|---|---|---|---|---|
NG | DG | AG | AS | AG | AS | |||
放线菌门Actinobacteriota | 36.82ab | 37.92a | 34.62b | 35.85ab | 0.048 | 0.03 | -0.09 | -0.06 |
变形菌门Proteobacteria | 24.26b | 18.61c | 29.68a | 27.70ab | 0.009 | -0.23 | 0.46 | 0.37 |
绿弯菌门Chloroflexi | 12.64a | 11.05a | 11.41a | 11.70a | 0.381 | -0.13 | 0.03 | 0.05 |
酸杆菌门Acidobacteriota | 14.19a | 12.61a | 10.02a | 9.93a | 0.087 | -0.11 | -0.18 | -0.19 |
芽单胞菌门Gemmatimonadota | 2.61b | 8.71a | 3.14b | 2.86b | 0.017 | 2.34 | -2.13 | -2.24 |
拟杆菌门Bacteroidota | 2.81b | 2.63b | 4.45a | 4.92a | 0.009 | -0.06 | 0.65 | 0.81 |
厚壁菌门Firmicutes | 1.15a | 2.10a | 0.70a | 0.85a | 0.090 | 0.83 | -1.22 | -1.09 |
粘球菌门Myxococcota | 1.13a | 0.82b | 1.19a | 1.06ab | 0.060 | -0.27 | 0.32 | 0.21 |
浮霉菌门Planctomycetota | 1.03a | 0.28b | 0.72ab | 0.92a | 0.025 | -0.73 | 0.43 | 0.63 |
表2 不同草地类型优势细菌门(>1%)相对丰度比较
Table 2 Comparison of relative abundance of dominant bacterial phyla (>1%) in different grasslands
门类 Phylum | 相对丰度 Relative abundance (%) | P 值 P value | 退化比例 Degradation proportion (%) | 恢复比例 Recovery proportion (%) | ||||
---|---|---|---|---|---|---|---|---|
NG | DG | AG | AS | AG | AS | |||
放线菌门Actinobacteriota | 36.82ab | 37.92a | 34.62b | 35.85ab | 0.048 | 0.03 | -0.09 | -0.06 |
变形菌门Proteobacteria | 24.26b | 18.61c | 29.68a | 27.70ab | 0.009 | -0.23 | 0.46 | 0.37 |
绿弯菌门Chloroflexi | 12.64a | 11.05a | 11.41a | 11.70a | 0.381 | -0.13 | 0.03 | 0.05 |
酸杆菌门Acidobacteriota | 14.19a | 12.61a | 10.02a | 9.93a | 0.087 | -0.11 | -0.18 | -0.19 |
芽单胞菌门Gemmatimonadota | 2.61b | 8.71a | 3.14b | 2.86b | 0.017 | 2.34 | -2.13 | -2.24 |
拟杆菌门Bacteroidota | 2.81b | 2.63b | 4.45a | 4.92a | 0.009 | -0.06 | 0.65 | 0.81 |
厚壁菌门Firmicutes | 1.15a | 2.10a | 0.70a | 0.85a | 0.090 | 0.83 | -1.22 | -1.09 |
粘球菌门Myxococcota | 1.13a | 0.82b | 1.19a | 1.06ab | 0.060 | -0.27 | 0.32 | 0.21 |
浮霉菌门Planctomycetota | 1.03a | 0.28b | 0.72ab | 0.92a | 0.025 | -0.73 | 0.43 | 0.63 |
项目 Item | 植被盖度PC | 植物物种丰富度PR | 植物香农指数PS | 植物地上生物量Abs | 土壤水分SM | 土壤容重BD | pH | 电导率EC | 土壤总有机碳TOC | 土壤全氮TN | 土壤全磷TP | 土壤有效磷AP | 速效钾AK | 硝态氮NO3--N | 铵态氮NH4+-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.85** | 0.84** | 0.85** | 0.75** | 0.61** | 0.40** | 0.25* | 0.57** | 0.73** | 0.34** | 0.05 | 0.37** | 0.31** | 0.69** | 0.02 |
P | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.008 | 0.025 | 0.001 | 0.001 | 0.001 | 0.610 | 0.003 | 0.004 | 0.001 | 0.879 |
表3 土壤细菌群落结构与植被和土壤性质的相关性
Table 3 Mantel tests of correlations between soil bacterial community structure and vegetation, and soil properties
项目 Item | 植被盖度PC | 植物物种丰富度PR | 植物香农指数PS | 植物地上生物量Abs | 土壤水分SM | 土壤容重BD | pH | 电导率EC | 土壤总有机碳TOC | 土壤全氮TN | 土壤全磷TP | 土壤有效磷AP | 速效钾AK | 硝态氮NO3--N | 铵态氮NH4+-N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
r | 0.85** | 0.84** | 0.85** | 0.75** | 0.61** | 0.40** | 0.25* | 0.57** | 0.73** | 0.34** | 0.05 | 0.37** | 0.31** | 0.69** | 0.02 |
P | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.008 | 0.025 | 0.001 | 0.001 | 0.001 | 0.610 | 0.003 | 0.004 | 0.001 | 0.879 |
图6 土壤细菌群落结构与植物特性(V)、土壤物理(P)和化学(C)性质的RDA和VPA分析
Fig.6 RDA and VPA for relationships among soil bacterial community structure and vegetation (V), and soil physical (P) and chemical (C) properties
1 | Sun H L, Zheng D, Yao T D, et al. Protection and construction of the national ecological security shelter zone on Tibetan plateau. Chinese Journal of Geography, 2012, 67(1): 3-12. |
孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设. 地理学报, 2012, 67(1): 3-12. | |
2 | Chen N, Zhang Y J, Zhu J T, et al. Nonlinear responses of productivity and diversity of alpine meadow communities to degradation. Journal of Plant Ecology, 2018, 42(1): 50-65. |
陈宁, 张扬建, 朱军涛, 等. 高寒草甸退化过程中群落生产力和物种多样性的非线性响应机制研究. 植物生态学报, 2018, 42(1): 50-65. | |
3 | Zheng H P, Chen Z X, Niu J Y, et al. Effects of interseeding on plant diversity and productivity in Maqu alpine desertified meadow. Acta Prataculturae Sinica, 2009, 18(3): 28-33. |
郑华平, 陈子萱, 牛俊义, 等. 补播禾草对玛曲高寒沙化草地植物多样性和生产力的影响. 草业学报, 2009, 18(3): 28-33. | |
4 | Li X Y, Dong S K, Zhu L, et al. Net carbon dioxide exchange of plant communities on degraded and restored alpine grasslands in headwater area of Three Rivers in China. Chinese Journal of Ecology, 2010, 29(10): 1944-1949. |
李小艳, 董世魁, 朱磊, 等. 三江源区高寒草地退化与恢复过程中二氧化碳净交换特征. 生态学杂志, 2010, 29(10): 1944-1949. | |
5 | Zhang H, Song X, Wang C, et al. The effects of different vegetation restoration patterns on soil bacterial diversity for sandy land in Hulunbeier. Acta Ecologica Sinica, 2013, 33(4): 211-216. |
6 | He Y L, Zhou H K, Zhao X Q, et al. Alpine grassland degradation and its restoration on Qinghai-Tibet Plateau. Journal of Grassland and Forage Science, 2008(11): 1-9. |
贺有龙, 周华坤, 赵新全, 等. 青藏高原高寒草地的退化及其恢复. 草业与畜牧, 2008(11): 1-9. | |
7 | Li L, He H D, Wei Y X, et al. Response of vegetation community structure, soil carbon sequestration, and water-holding capacity in the agro-pastoral transitional zone in the Three Rivers Source Region. Prataculturae Science, 2017, 34(10): 1999-2008. |
李令, 贺慧丹, 未亚西, 等. 三江源农牧交错区植被群落及土壤固碳持水能力对退耕还草措施的响应. 草业科学, 2017, 34(10): 1999-2008. | |
8 | Hou X K. Research on variation characteristics of soil and vegetation in different types of alpine artificial grassland. Xining: Qinghai University, 2015. |
侯宪宽. 不同类型高寒人工草地土壤和植被变化特征研究. 西宁: 青海大学, 2015. | |
9 | Yan M Y. Experiment of annual artificial grassland mixture sowing in ecological immigrant community in three river resource region. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2010, 40(5): 9-10. |
阎明毅. 三江源生态移民社区一年生人工草地混播试验. 青海畜牧兽医杂志, 2010, 40(5): 9-10. | |
10 | Wang C T, Cao G M, Wang Q L, et al. Characteristics of artificial grassland plant communities with different establishment duration and their relationships with soil properties in the source region of Three Rivers in China. Chinese Journal of Applied Ecology, 2007(11): 2426-2431. |
王长庭, 曹广民, 王启兰, 等. 三江源地区不同建植期人工草地植被特征及其与土壤特征的关系. 应用生态学报, 2007(11): 2426-2431. | |
11 | Ren H, Peng S L. Introduction to restoration ecology. Beijing: Science Press, 2008. |
任海, 彭少麟. 恢复生态学导论. 北京: 科学出版社, 2008. | |
12 | Millard P, Singh B K. Does grassland vegetation drive soil microbial diversity? Nutrient Cycling in Agroecosystems, 2010, 88(2): 147-158. |
13 | Anderson C R, Condron L M, Clough T J, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 2011, 54(5/6): 309-320. |
14 | He F L, Jin H X, Wang S M, et al. Effect of desertification on soil microbial biomass and enzyme activities in Maqu alpine meadow. Acta Ecologica Sinica, 2016, 36(18): 5876-5883. |
何芳兰, 金红喜, 王锁民, 等. 沙化对玛曲高寒草甸土壤微生物数量及土壤酶活性的影响. 生态学报, 2016, 36(18): 5876-5883. | |
15 | Zhang X F, Zhao L, Xu S J, et al. Soil moisture effect on bacterial and fungal community in Beilu River (Tibetan Plateau) permafrost soils with different vegetation types. Journal of Applied Microbiology, 2013, 114(4): 1054-1065. |
16 | Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10): 1340-1351. |
17 | Zhu P, Chen R S, Song Y X, et al. Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China. Acta Ecologica Sinica, 2017, 37(10): 3505-3514. |
朱平, 陈仁升, 宋耀选, 等. 祁连山中部4种典型植被类型土壤细菌群落结构差异. 生态学报, 2017, 37(10): 3505-3514. | |
18 | Zou L N, Zhou Z Y, Yan S Y, et al. Response of soil nutrients to different land utilization types in alpine meadow in Maqu. Chinese Journal of Grassland, 2009, 31(6): 80-87. |
邹丽娜, 周志宇, 颜淑云, 等. 玛曲高寒草地土壤养分对不同利用方式的响应. 中国草地学报, 2009, 31(6): 80-87. | |
19 | Han H T, Zhu X N. Climate change and human activities of Maqu area and its impact on eco-environment. Journal of Desert Research, 2007(4): 608-613. |
韩海涛, 祝小妮. 气候变化与人类活动对玛曲地区生态环境的影响. 中国沙漠, 2007(4): 608-613. | |
20 | Fu B, Qi Y B, Chang Q R. Effect of different revegetation management methods on the soil and vegetation characteristics of degraded sandy grassland. Acta Agrestia Sinica, 2015, 23(1): 47-54. |
付标, 齐雁冰, 常庆瑞. 不同植被重建管理方式对沙质草地土壤及植被性质的影响. 草地学报, 2015, 23(1): 47-54. | |
21 | Olsen S R, Sommers L E. Methods of soil analysis. Madison: Amer Society of Agronomy, 1982: 403-430. |
22 | Lu R K. Analysis method of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
23 | Jones D L, Willett V B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999. |
24 | Li C C, Zhou Y X, Gu Q, et al. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grass. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
李聪聪, 周亚星, 谷强, 等. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制. 草业学报, 2021, 30(1): 46-58. | |
25 | Wang Y, Sheng H F, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Applied & Environmental Microbiology, 2012, 78(23): 8264-8271. |
26 | Mganga K Z, Razavi B S, Kuzyakov Y. Land use affects soil biochemical properties in Mt. Kilimanjaro region. Catena, 2016, 141: 22-29. |
27 | Li H Y, Yao T, Zhang J G, et al. Relationship between soil bacterial community and environmental factors in the degraded alpine grassland of eastern Qilian Mountains, China. Chinese Journal of Applied Ecology, 2018, 29(11): 3793-3801. |
李海云, 姚拓, 张建贵, 等. 东祁连山退化高寒草地土壤细菌群落与土壤环境因子间的相互关系. 应用生态学报, 2018, 29(11): 3793-3801. | |
28 | Prakash T M, Alexandru M, Pete M, et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Global Change Biology, 2015, 21(11): 4076-4085. |
29 | Luo Z, Liu J, Jia T, et al. The Response of soil bacterial communities and nitrogen cycling to subalpine meadow degradation on the Loess Plateau, China. Applied and Environmental Microbiology, 2020, 86(9): 1-18. |
30 | Liu M L, Li X R, Zhu R Q, et al. Vegetation richness, species identity, and soil nutrients drive the shifts in soil bacterial communities during restoration process. Environmental Microbiology Reports, 2021,13(4): 411-424. |
31 | Wang X P, Yang X, Yang N, et al. Effects of litter diversity and composition on litter decomposition characteristics and soil microbial community. Acta Ecologica Sinica, 2019, 39(17): 6264-6272. |
王小平, 杨雪, 杨楠, 等. 凋落物多样性及组成对凋落物分解和土壤微生物群落的影响. 生态学报, 2019, 39(17): 6264-6272. | |
32 | Fierer N, Jackson R B. From the cover: The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631. |
33 | Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One, 2011, 6(2): e17000. |
34 | Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15): 5111-5120. |
35 | Kaiser K, Wemheuer B, Korolkow V, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 2016, 6(1): 1-12. |
36 | Shang Z H, Ding L L, Long R J, et al. Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2007(1): 34-40. |
尚占环, 丁玲玲, 龙瑞军, 等. 江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系. 草业学报, 2007(1): 34-40. | |
37 | Yang Y R, Lee S H, Jang I, et al. Soil bacterial community structures across biomes in artificial ecosystems. Ecological Engineering, 2020, 158: 1-8. |
38 | Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nature Communications, 2020, 11(1): 1-9. |
39 | Zhou H, Zhang D G, Jiang Z H, et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Science of the Total Environment, 2019, 651(2): 2281-2291. |
40 | Barnard R L, Osborne C A, Firestone M K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal, 2013, 7(11): 2229-2241. |
41 | Clark J S, Campbell J H, Grizzle H, et al. Soil microbial community response to drought and precipitation variability in the Chihuahuan desert. Microbial Ecology, 2009, 57(2): 248-260. |
42 | Debruyn J M, Nixon L T, Fawaz M N, et al. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology, 2011, 77(17): 6295-6300. |
43 | Yang N, Zou D S, Yang M Y, et al. Variations of soil microbial community diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province. Scientia Silvae Sinicae, 2016, 52(8): 146-156. |
杨宁, 邹冬生, 杨满元, 等. 衡阳紫色土丘陵坡地不同植被恢复阶段土壤微生物群落多样性的变化. 林业科学, 2016, 52(8): 146-156. | |
44 | Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry, 2010, 42(9): 1363-1371. |
45 | Prober S M, Leff J W, Bates S T, et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18(1): 85-95. |
46 | Stursova M, Zifcakova L, Leigh M B, et al. Cellulose utilization in forest litter and soil: Identification of bacterial and fungal decomposers. FEMS Microbiology Ecology, 2012, 80(3): 735-746. |
47 | Zhang P, Li X R, Jia R L, et al. Nitrogenase activity of biological soil crusts and its response to hydrothermic factors in the Shapotou region of Northern China. Chinese Journal of Plant Ecology, 2011, 35(9): 906-913. |
张鹏, 李新荣, 贾荣亮, 等. 沙坡头地区生物土壤结皮的固氮活性及其对水热因子的响应. 植物生态学报, 2011, 35(9): 906-913. | |
48 | Yang D, Fan D Y, Xie Z Q, et al. Research progress on the mechanisms and influence factors of nitrogen retention and transformation in riparian ecosystems. Chinese Journal of Applied Ecology, 2016, 27(3): 973-980. |
杨丹, 樊大勇, 谢宗强, 等. 消落带生态系统氮素截留转化的主要机制及影响因素. 应用生态学报, 2016, 27(3): 973-980. | |
49 | Dassen S, Cortois R, Martens H, et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology, 2017, 26(15): 4085-4098. |
50 | De D G B, Cornelissen J H C, Bardgett R D, et al. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 2008, 11(5): 516-531. |
51 | Vries F T, Manning P, Tallowin J R B, et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecology Letters, 2012, 15(11): 1230-1239. |
52 | Rasche F, Knapp D, Kaiser C, et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. The ISME Journal, 2010, 5(3): 389-402. |
53 | Klimek B, Chodak M, Jaźwa M, et al. The relationship between soil bacteria substrate utilisation patterns and the vegetation structure in temperate forests. European Journal of Forest Research, 2016, 135(1): 179-189. |
[1] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[2] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
[3] | 刘佳丽, 范建容, 张茜彧, 杨超, 徐富宝, 张晓雪, 梁博. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[4] | 宋梅玲, 王玉琴, 王宏生, 鲍根生. 内生真菌对高寒草地紫花针茅凋落物分解的影响[J]. 草业学报, 2021, 30(9): 150-158. |
[5] | 赵文, 尹亚丽, 李世雄, 刘燕, 刘晶晶, 董怡玲, 苏世锋, 吉凌鹤. 祁连山不同类型草地土壤细菌群落特征研究[J]. 草业学报, 2021, 30(12): 161-171. |
[6] | 石明明, 王晓敏, 陈奇, 韩炳宏, 周秉荣, 肖建设, 肖宏斌. 高寒草地干湿生态系统土壤水分及入渗对降水的响应[J]. 草业学报, 2021, 30(12): 49-58. |
[7] | 李聪聪, 周亚星, 谷强, 杨明新, 朱传鲁, 彭子原, 薛凯, 赵新全, 王艳芬, 纪宝明, 张静. 三江源区典型高寒草地丛枝菌根真菌多样性及构建机制[J]. 草业学报, 2021, 30(1): 46-58. |
[8] | 陈红, 马文明, 周青平, 杨智, 刘超文, 刘金秋, 杜中曼. 高寒草地灌丛化对土壤团聚体稳定性及其铁铝氧化物分异的研究[J]. 草业学报, 2020, 29(9): 73-84. |
[9] | 魏鹏, 安沙舟, 董乙强, 孙宗玖, 别尔达吾列提·希哈依, 李超. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征[J]. 草业学报, 2020, 29(5): 182-190. |
[10] | 马晓静, 郭艳菊, 张嘉玉, 许爱云, 刘金龙, 许冬梅. 宁夏盐池县沙化草地土壤团聚体分异特征[J]. 草业学报, 2020, 29(3): 27-37. |
[11] | 宋梅玲, 王玉琴, 鲍根生, 王宏生. 狼毒防除对高寒草地群落植物养分重吸收的影响[J]. 草业学报, 2020, 29(10): 47-57. |
[12] | 李争艳, 徐智明, 师尚礼, 贺春贵. 江淮地区不同轮茬作物对苜蓿产量及根际土壤质量的影响[J]. 草业学报, 2019, 28(8): 28-39. |
[13] | 刘雪儿, 马金凤, 杨成德, 李统华. 青海高寒草地针茅根际土壤细菌拮抗功能评价及鉴定[J]. 草业学报, 2019, 28(8): 161-169. |
[14] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
[15] | 张建贵, 王理德, 姚拓, 李海云, 高亚敏, 杨晓玫, 李昌宁, 李琦, 冯影, 胡彦婷. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究[J]. 草业学报, 2019, 28(5): 15-25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||