草业学报 ›› 2025, Vol. 34 ›› Issue (6): 27-45.DOI: 10.11686/cyxb2024399
秦文利1(
), 张静1, 肖广敏1, 崔素倩2, 叶建勋3, 智健飞1, 张立锋1, 谢楠1, 冯伟1, 刘振宇1, 潘璇1, 代云霞1, 刘忠宽1(
)
收稿日期:2024-10-13
修回日期:2024-11-28
出版日期:2025-06-20
发布日期:2025-04-03
通讯作者:
刘忠宽
作者简介:Corresponding author. E-mail: zhongkuanjh@163.com基金资助:
Wen-li QIN1(
), Jing ZHANG1, Guang-min XIAO1, Su-qian CUI2, Jian-xun YE3, Jian-fei ZHI1, Li-feng ZHANG1, Nan XIE1, Wei FENG1, Zhen-yu LIU1, Xuan PAN1, Yun-xia DAI1, Zhong-kuan LIU1(
)
Received:2024-10-13
Revised:2024-11-28
Online:2025-06-20
Published:2025-04-03
Contact:
Zhong-kuan LIU
摘要:
2020-2022年度以毛叶苕子和玉米为材料,采用二因素裂区田间试验设计,主处理为冬闲田(FF)、冬闲田种植毛叶苕子并全量还田(HV)2种模式,副处理为玉米0(0N)、135.0(50%N)和270.0 kg·hm-2(100%N)3个施氮水平,研究了毛叶苕子还田和施氮水平对玉米0~10 cm、10~20 cm土层土壤团聚体组成与分布、团聚体平均重量直径(MWD)、几何平均直径(GMD)、破坏率(PAD)、可蚀性因子(K)、容重(BD)、总孔隙度(TP)、毛管孔隙度(CP)、非毛管孔隙度(NCP)、最大持水量(MWHC)、毛管持水量(CWHC)、非毛管持水量(NCWHC)、土壤有机碳(SOC)含量、团聚体有机碳(AOC)含量及玉米产量的影响,以期从土壤物理性状变化为绿肥部分替代化肥氮实现作物稳产增产提供科学依据。结果表明,与FF模式相比,HV模式0~10 cm、10~20 cm土层>0.25 mm水稳定性团聚体总含量(R0.25)、MWD、GMD、TP、CP、NCP、MWHC、CWHC、NCWHC、SOC含量分别显著增加8.95%、40.84%、30.57%、5.89%、1.47%、4.42%、15.01%、6.41%、27.08%、7.29%和13.13%、62.87%、51.68%、5.02%、0.76%、4.25%、13.11%、3.32%、27.86%、7.10%;PAD、K和BD分别显著降低8.83%、20.79%、5.99%和12.14%、30.73%、7.31%。HV模式下各土层各粒径AOC含量及玉米产量均显著提高。施氮水平对各土层各粒径AOC含量、R0.25及其他物理性状指标、玉米产量影响显著或极显著。HV模式50%N处理0~10 cm、10~20 cm土层的SOC含量、>5 mm AOC含量及0~10 cm土层的0.50~1.00 mm AOC含量、10~20 cm土层的BD、TP、CP、NCP、MWD、CWHC、NCWHC及玉米产量较FF模式100%N处理变化均不显著,0~10 cm、10~20 cm土层的2.00~5.00 mm、1.00~2.00 mm、0.25~0.50 mm、<0.25 mm AOC含量及10~20 cm土层0.50~1.00 mm 的AOC含量,0~10 cm、10~20 cm土层的R0.25、MWD、GMD,0~10 cm土层的TP、NCP、MWHC、NCWHC均显著提高,0~10 cm、10~20 cm土层的PAD、K及0~10 cm土层的BD均显著下降。各粒径AOC含量与SOC含量之间、各粒级团聚体含量与其AOC含量之间、土壤物理性状指标与各粒级团聚体含量之间、玉米产量与土壤物理性状指标之间均呈显著或极显著相关。因此,绿肥还田后土壤有机碳含量的提高是促进团粒结构形成,增强土壤抗侵蚀、持水能力的重要基础。绿肥对土壤氮、有机碳的输入是其部分替代氮肥、改善土壤物理性状、实现减氮增产的重要前提。
秦文利, 张静, 肖广敏, 崔素倩, 叶建勋, 智健飞, 张立锋, 谢楠, 冯伟, 刘振宇, 潘璇, 代云霞, 刘忠宽. 绿肥部分替代化肥氮对土壤物理性状的影响[J]. 草业学报, 2025, 34(6): 27-45.
Wen-li QIN, Jing ZHANG, Guang-min XIAO, Su-qian CUI, Jian-xun YE, Jian-fei ZHI, Li-feng ZHANG, Nan XIE, Wei FENG, Zhen-yu LIU, Xuan PAN, Yun-xia DAI, Zhong-kuan LIU. Effects of partial replacement of chemical nitrogen fertilizers with green manure on soil physical properties and maize (Zea mays) yield[J]. Acta Prataculturae Sinica, 2025, 34(6): 27-45.
| pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 碱解氮 Alkali-hydrolyzable N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
|---|---|---|---|---|---|---|---|
| 8.07 | 19.30 | 1.19 | 1.37 | 20.14 | 93.32 | 21.17 | 179.59 |
表1 0~20 cm土层土壤基本理化性质
Table 1 Basic physical and chemical properties of the 0-20 cm depth soil
| pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 碱解氮 Alkali-hydrolyzable N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
|---|---|---|---|---|---|---|---|
| 8.07 | 19.30 | 1.19 | 1.37 | 20.14 | 93.32 | 21.17 | 179.59 |
图1 土壤水稳定性团聚体组成变化不同小写字母表示同一土层不同处理间差异显著(P<0.05),下同。Different lowercase letters indicate significant differences among different treatments in the same soil layer, the same below.
Fig. 1 Changes in composition of soil water-stable aggregates
土层 Soil layer | 种植模式 Cropping pattern | 施氮 处理 N treatment | 土壤容重 Bulk density (g·cm-3) | 总孔隙度 Total porosity (%) | 毛管孔隙度 Capillary porosity (%) | 非毛管孔隙度 Non-capillary porosity (%) | 最大持水量 Maximum water-holding capacity (t·hm-2) | 毛管持水量 Capillary water-holding capacity (t·hm-2) | 非毛管持水量 Non-capillary water-holding capacity (t·hm-2) |
|---|---|---|---|---|---|---|---|---|---|
| 0~10 cm | HV | 0%N | 1.43±0.01c | 40.02±2.72bc | 23.54±0.20c | 16.48±2.92b | 400.20±27.20bc | 235.40±2.00c | 164.80±29.20b |
| 50%N | 1.41±0.01c | 46.63±2.15a | 24.26±0.09b | 22.37±2.07a | 466.30±21.52a | 242.60±0.90b | 223.70±20.70a | ||
| 100%N | 1.40±0.02c | 48.86±0.89a | 25.43±0.87a | 23.42±0.60a | 488.57±8.94a | 254.33±8.65a | 234.23±6.05a | ||
| FF | 0%N | 1.52±0.01a | 35.30±2.33c | 21.37±0.76e | 13.93±2.88b | 353.00±23.30c | 213.70±7.63e | 139.30±28.84b | |
| 50%N | 1.51±0.01a | 40.38±0.92b | 22.99±0.23d | 17.39±0.99b | 403.80±9.23b | 229.93±2.31d | 173.87±9.89b | ||
| 100%N | 1.48±0.01b | 42.15±0.93b | 24.46±0.85ab | 17.69±0.89b | 421.47±9.31b | 244.60±8.49ab | 176.87±8.94b | ||
| ANOVA | |||||||||
| CP | ** | ** | ** | ** | ** | ** | ** | ||
| N | ** | ** | ** | ** | ** | ** | ** | ||
| CP×N | ns | ns | ns | ns | ns | ns | ns | ||
| 10~20 cm | HV | 0%N | 1.52±0.03ab | 40.52±1.65b | 23.01±0.42a | 17.51±2.07bc | 405.20±16.46b | 230.13±4.22a | 175.07±20.67bc |
| 50%N | 1.48±0.02b | 43.39±1.39ab | 24.27±0.92a | 19.13±1.15ab | 433.93±13.90ab | 242.67±9.23a | 191.27±11.49ab | ||
| 100%N | 1.44±0.05b | 45.90±1.32a | 23.99±0.97a | 21.90±2.23a | 458.97±13.25a | 239.93±9.68a | 219.03±22.32a | ||
| FF | 0%N | 1.61±0.10a | 34.75±0.92d | 22.07±0.49b | 12.68±1.01d | 347.50±9.17d | 220.73±4.87b | 126.77±10.07d | |
| 50%N | 1.60±0.01a | 38.22±1.35c | 23.50±0.52a | 14.72±0.83c | 382.20±13.49c | 235.03±5.20a | 147.17±8.31c | ||
| 100%N | 1.58±0.09ab | 41.79±1.40b | 23.41±0.97a | 18.39±0.45b | 417.93±14.00b | 234.07±9.72a | 183.87±4.52b | ||
| ANOVA | |||||||||
| CP | ** | ** | * | ** | ** | * | ** | ||
| N | ns | ** | * | ** | ** | * | ** | ||
| CP×N | ns | ns | ns | ns | ns | ns | ns |
表2 毛叶苕子和施氮水平对土壤物理性状的影响
Table 2 Effects of hairy vetch and nitrogen rate on the soil physical properties
土层 Soil layer | 种植模式 Cropping pattern | 施氮 处理 N treatment | 土壤容重 Bulk density (g·cm-3) | 总孔隙度 Total porosity (%) | 毛管孔隙度 Capillary porosity (%) | 非毛管孔隙度 Non-capillary porosity (%) | 最大持水量 Maximum water-holding capacity (t·hm-2) | 毛管持水量 Capillary water-holding capacity (t·hm-2) | 非毛管持水量 Non-capillary water-holding capacity (t·hm-2) |
|---|---|---|---|---|---|---|---|---|---|
| 0~10 cm | HV | 0%N | 1.43±0.01c | 40.02±2.72bc | 23.54±0.20c | 16.48±2.92b | 400.20±27.20bc | 235.40±2.00c | 164.80±29.20b |
| 50%N | 1.41±0.01c | 46.63±2.15a | 24.26±0.09b | 22.37±2.07a | 466.30±21.52a | 242.60±0.90b | 223.70±20.70a | ||
| 100%N | 1.40±0.02c | 48.86±0.89a | 25.43±0.87a | 23.42±0.60a | 488.57±8.94a | 254.33±8.65a | 234.23±6.05a | ||
| FF | 0%N | 1.52±0.01a | 35.30±2.33c | 21.37±0.76e | 13.93±2.88b | 353.00±23.30c | 213.70±7.63e | 139.30±28.84b | |
| 50%N | 1.51±0.01a | 40.38±0.92b | 22.99±0.23d | 17.39±0.99b | 403.80±9.23b | 229.93±2.31d | 173.87±9.89b | ||
| 100%N | 1.48±0.01b | 42.15±0.93b | 24.46±0.85ab | 17.69±0.89b | 421.47±9.31b | 244.60±8.49ab | 176.87±8.94b | ||
| ANOVA | |||||||||
| CP | ** | ** | ** | ** | ** | ** | ** | ||
| N | ** | ** | ** | ** | ** | ** | ** | ||
| CP×N | ns | ns | ns | ns | ns | ns | ns | ||
| 10~20 cm | HV | 0%N | 1.52±0.03ab | 40.52±1.65b | 23.01±0.42a | 17.51±2.07bc | 405.20±16.46b | 230.13±4.22a | 175.07±20.67bc |
| 50%N | 1.48±0.02b | 43.39±1.39ab | 24.27±0.92a | 19.13±1.15ab | 433.93±13.90ab | 242.67±9.23a | 191.27±11.49ab | ||
| 100%N | 1.44±0.05b | 45.90±1.32a | 23.99±0.97a | 21.90±2.23a | 458.97±13.25a | 239.93±9.68a | 219.03±22.32a | ||
| FF | 0%N | 1.61±0.10a | 34.75±0.92d | 22.07±0.49b | 12.68±1.01d | 347.50±9.17d | 220.73±4.87b | 126.77±10.07d | |
| 50%N | 1.60±0.01a | 38.22±1.35c | 23.50±0.52a | 14.72±0.83c | 382.20±13.49c | 235.03±5.20a | 147.17±8.31c | ||
| 100%N | 1.58±0.09ab | 41.79±1.40b | 23.41±0.97a | 18.39±0.45b | 417.93±14.00b | 234.07±9.72a | 183.87±4.52b | ||
| ANOVA | |||||||||
| CP | ** | ** | * | ** | ** | * | ** | ||
| N | ns | ** | * | ** | ** | * | ** | ||
| CP×N | ns | ns | ns | ns | ns | ns | ns |
土层 Soil layer | 种植模式 Cropping pattern | 施氮水平N rate | >5.00 mm | 2.00~5.00 mm | 1.00~2.00 mm | 0.50~1.00 mm | 0.25~0.50 mm | <0.25 mm |
|---|---|---|---|---|---|---|---|---|
| 0~10 cm | HV | 0%N | 13.85±0.22c | 17.09±0.72b | 18.75±0.45b | 17.13±0.48ab | 15.35±0.10b | 9.19±0.31c |
| 50%N | 14.47±0.26ab | 18.98±0.39a | 19.83±0.24a | 17.61±0.85ab | 16.40±0.19a | 9.85±0.16b | ||
| 100%N | 14.87±0.24a | 19.01±0.42a | 19.91±0.62a | 17.89±0.46a | 16.42±0.17a | 10.18±0.08a | ||
| FF | 0%N | 13.34±0.15d | 15.24±0.17c | 15.26±0.52d | 15.21±0.26c | 13.87±0.12d | 7.99±0.53d | |
| 50%N | 13.83±0.19c | 16.08±0.40b | 16.43±0.33c | 16.84±0.22b | 14.65±0.38c | 8.77±0.27cd | ||
| 100%N | 14.23±0.03b | 16.98±0.23b | 17.75±0.60b | 17.85±0.57a | 15.44±0.22b | 9.16±0.06c | ||
| ANOVA | ||||||||
| CP | ** | ** | ** | ** | ** | ** | ||
| N | ** | ** | ** | ** | ** | ** | ||
| CP×N | ns | ns | ns | * | * | ns | ||
| 10~20 cm | HV | 0%N | 12.42±0.26b | 14.14±0.18b | 15.71±0.26b | 14.54±0.34d | 14.04±0.10c | 7.96±0.30c |
| 50%N | 13.37±0.41a | 16.46±1.04a | 16.91±0.30a | 16.32±0.60b | 15.08±0.38b | 8.50±0.10b | ||
| 100%N | 13.69±0.77a | 16.99±0.92a | 17.43±0.47a | 17.69±0.39a | 15.93±0.39a | 9.14±0.28a | ||
| FF | 0%N | 11.81±0.23c | 12.70±0.53d | 13.88±0.27d | 14.40±0.67d | 12.63±0.22e | 7.18±0.40d | |
| 50%N | 12.78±0.18ab | 13.59±0.16c | 14.52±0.09c | 14.69±0.62cd | 13.36±0.12d | 7.21±0.41d | ||
| 100%N | 13.45±0.23a | 14.04±0.16b | 15.15±0.31b | 15.32±0.16c | 14.06±0.29c | 7.63±0.27cd | ||
| ANOVA | ||||||||
| CP | * | ** | ** | ** | ** | ** | ||
| N | ** | ** | ** | ** | ** | ** | ||
| CP×N | ns | ns | ns | * | ns | ns | ||
表3 毛叶苕子和施氮水平对水稳性团聚体有机碳含量的影响
Table 3 Effects of hair vetch and nitrogen application rate on the organic carbon contents of water-stability aggregates (g·kg-1)
土层 Soil layer | 种植模式 Cropping pattern | 施氮水平N rate | >5.00 mm | 2.00~5.00 mm | 1.00~2.00 mm | 0.50~1.00 mm | 0.25~0.50 mm | <0.25 mm |
|---|---|---|---|---|---|---|---|---|
| 0~10 cm | HV | 0%N | 13.85±0.22c | 17.09±0.72b | 18.75±0.45b | 17.13±0.48ab | 15.35±0.10b | 9.19±0.31c |
| 50%N | 14.47±0.26ab | 18.98±0.39a | 19.83±0.24a | 17.61±0.85ab | 16.40±0.19a | 9.85±0.16b | ||
| 100%N | 14.87±0.24a | 19.01±0.42a | 19.91±0.62a | 17.89±0.46a | 16.42±0.17a | 10.18±0.08a | ||
| FF | 0%N | 13.34±0.15d | 15.24±0.17c | 15.26±0.52d | 15.21±0.26c | 13.87±0.12d | 7.99±0.53d | |
| 50%N | 13.83±0.19c | 16.08±0.40b | 16.43±0.33c | 16.84±0.22b | 14.65±0.38c | 8.77±0.27cd | ||
| 100%N | 14.23±0.03b | 16.98±0.23b | 17.75±0.60b | 17.85±0.57a | 15.44±0.22b | 9.16±0.06c | ||
| ANOVA | ||||||||
| CP | ** | ** | ** | ** | ** | ** | ||
| N | ** | ** | ** | ** | ** | ** | ||
| CP×N | ns | ns | ns | * | * | ns | ||
| 10~20 cm | HV | 0%N | 12.42±0.26b | 14.14±0.18b | 15.71±0.26b | 14.54±0.34d | 14.04±0.10c | 7.96±0.30c |
| 50%N | 13.37±0.41a | 16.46±1.04a | 16.91±0.30a | 16.32±0.60b | 15.08±0.38b | 8.50±0.10b | ||
| 100%N | 13.69±0.77a | 16.99±0.92a | 17.43±0.47a | 17.69±0.39a | 15.93±0.39a | 9.14±0.28a | ||
| FF | 0%N | 11.81±0.23c | 12.70±0.53d | 13.88±0.27d | 14.40±0.67d | 12.63±0.22e | 7.18±0.40d | |
| 50%N | 12.78±0.18ab | 13.59±0.16c | 14.52±0.09c | 14.69±0.62cd | 13.36±0.12d | 7.21±0.41d | ||
| 100%N | 13.45±0.23a | 14.04±0.16b | 15.15±0.31b | 15.32±0.16c | 14.06±0.29c | 7.63±0.27cd | ||
| ANOVA | ||||||||
| CP | * | ** | ** | ** | ** | ** | ||
| N | ** | ** | ** | ** | ** | ** | ||
| CP×N | ns | ns | ns | * | ns | ns | ||
图6 各指标相关性分析>5.00 mm:>5.00 mm粒径的水稳性团聚体百分含量 Percentage of >5.00 mm water-stable aggregates;2.00~5.00 mm:2.00~5.00 mm粒径的水稳性团聚体百分含量 Percentage of 2.00-5.00 mm water-stable aggregates;1.00~2.00 mm:1.00~2.00 mm粒径的水稳性团聚体百分含量 Percentage of 1.00-2.00 mm water-stable aggregates; 0.50~1.00 mm:0.50~1.00 mm粒径的水稳性团聚体百分含量 Percentage of 0.50-1.00 mm water-stable aggregates;0.25~0.50 mm:0.25~0.50 mm粒径的水稳性团聚体百分含量 Percentage of 0.25-0.50 mm water-stable aggregates; r0.25:<0.25 mm粒径的水稳性团聚体百分含量 Percentage of <0.25 mm water-stable aggregates;R0.25:>0.25 mm粒径的水稳性团聚体百分含量 Percentage of >0.25 mm water-stable aggregates;MWD:平均重量直径 Mean weight diameter; GMD:几何平均直径 Geometric mean diameter; PAD:团聚体破坏率 Percentage of aggregate destruction; K:土壤可蚀性K值K-factor of soil erosion; BD:容重Bulk density; TP:总孔隙度Total porosity; CP:毛管孔隙度Capillary porosity; NCP:非毛管孔隙度Non-capillary porosity; MWHC:最大持水量Maximum water-holding capacity; CWHC:毛管持水量Capillary water-holding capacity; NCWHC:非毛管持水量Non-capillary water-holding capacity; >5.00 mm OCC:>5.00 mm粒径的水稳性团聚体有机碳含量Organic carbon contents of >5.00 mm water-stable aggregates; 2.00~5.00 mm OCC:2.00~5.00 mm粒径的水稳性团聚体有机碳含量Organic carbon contents of 2.00-5.00 mm water-stable aggregates;1.00~2.00 mm OCC:1.00~2.00 mm粒径的水稳性团聚体有机碳含量Organic carbon contents of 1.00-2.00 mm water-stable aggregates;0.50~1.00 mm OCC:0.50~1.00 mm粒径的水稳性团聚体有机碳含量Organic carbon contents of 0.50-1.00 mm water-stable aggregates;0.25~0.50 mm OCC:0.25~0.50 mm粒径的水稳性团聚体有机碳含量Organic carbon contents of 0.25-0.50 mm water-stable aggregates; r0.25 OCC:<0.25 mm粒径的水稳性团聚体有机碳含量Organic carbon contents of <0.25 mm water-stable aggregates; R0.25 OCC:>0.25 mm粒径的水稳性团聚体有机碳含量Organic carbon contents of >0.25 mm water-stable aggregates.
Fig. 6 Correlation analysis of various indicators
土壤物理性状指标 Soil physical indexes | 0~10 cm | 10~20 cm | ||
|---|---|---|---|---|
| 拟合方程Fitted equations | R2 | 拟合方程Fitted equations | R2 | |
| 团聚体平均重量直径MWD | y=4537.8x+4317.2 | 0.489** | y=2745.3x+5756.2 | 0.422** |
| 团聚体几何平均直径GMD | y=19540x+3138.4 | 0.524** | y=10695x+5317.2 | 0.451** |
| 团聚体破坏率PAD | y=-166.8x+19244 | 0.420** | y=-128.39x+16537 | 0.504** |
| 土壤可蚀性K值K | y=-58001x+15772 | 0.569** | y=-39789x+13205 | 0.494** |
| 土壤容重BD | y=-13409x+28402 | 0.244* | y=-7377.9x+20211 | 0.208 |
| 总孔隙度TP | y=226.23x-693.65 | 0.674** | y=272.91x-2265.9 | 0.622** |
| 毛管孔隙度CP | y=776.03x-9514.9 | 0.649** | y=991.6x-14321 | 0.516** |
| 非毛管孔隙度NCP | y=266.58x+3914.4 | 0.571** | y=286.22x+3882.2 | 0.504** |
| 土壤最大持水量MWHC | y=22.623x-693.65 | 0.674** | y=27.291x-2265.9 | 0.622** |
| 毛管持水量CWHC | y=77.603x-9514.9 | 0.649** | y=99.16x-14321 | 0.516** |
| 非毛管持水量NCWHC | y=26.658x+3914.4 | 0.571** | y=28.622x+3882.2 | 0.504** |
表4 玉米产量与0~10 cm、10~20 cm土层土壤物理性状指标的拟合方程
Table 4 Fitted equations between maize yield and soil physical indexes of 0-10 cm and 10-20 cm soil layers
土壤物理性状指标 Soil physical indexes | 0~10 cm | 10~20 cm | ||
|---|---|---|---|---|
| 拟合方程Fitted equations | R2 | 拟合方程Fitted equations | R2 | |
| 团聚体平均重量直径MWD | y=4537.8x+4317.2 | 0.489** | y=2745.3x+5756.2 | 0.422** |
| 团聚体几何平均直径GMD | y=19540x+3138.4 | 0.524** | y=10695x+5317.2 | 0.451** |
| 团聚体破坏率PAD | y=-166.8x+19244 | 0.420** | y=-128.39x+16537 | 0.504** |
| 土壤可蚀性K值K | y=-58001x+15772 | 0.569** | y=-39789x+13205 | 0.494** |
| 土壤容重BD | y=-13409x+28402 | 0.244* | y=-7377.9x+20211 | 0.208 |
| 总孔隙度TP | y=226.23x-693.65 | 0.674** | y=272.91x-2265.9 | 0.622** |
| 毛管孔隙度CP | y=776.03x-9514.9 | 0.649** | y=991.6x-14321 | 0.516** |
| 非毛管孔隙度NCP | y=266.58x+3914.4 | 0.571** | y=286.22x+3882.2 | 0.504** |
| 土壤最大持水量MWHC | y=22.623x-693.65 | 0.674** | y=27.291x-2265.9 | 0.622** |
| 毛管持水量CWHC | y=77.603x-9514.9 | 0.649** | y=99.16x-14321 | 0.516** |
| 非毛管持水量NCWHC | y=26.658x+3914.4 | 0.571** | y=28.622x+3882.2 | 0.504** |
| 1 | Ren Z J, Luo Y J, Wei C F. Progress in the study on field soil aggregate. Journal of Anhui Agricultural Sciences, 2011, 39(2): 1101-1105. |
| 任镇江, 罗友进, 魏朝富. 农田土壤团聚体研究进展. 安徽农业科学, 2011, 39(2): 1101-1105. | |
| 2 | Li C, Wang J, Xing W C, et al. Effects of green manure on physical properties of topsoil in a dryland winter wheat field. Bulletin of Soil and Water Conservation, 2022, 42(2): 107-113, 121. |
| 李超, 王俊, 邢文超, 等. 绿肥填闲种植对旱作冬小麦农田耕层土壤物理性质的影响. 水土保持通报, 2022, 42(2): 107-113, 121. | |
| 3 | Blanco-Canqui H, Lal R. Mechanisms of carbon sequestration in soil aggregates. Critical Reviews in Plant Sciences, 2004, 23(6): 481-504. |
| 4 | Li Z Q, Wang J H, Zhang X. A review on the research of decomposition and nutrients release of green manure. Soil and Fertilizer Sciences in China, 2017(4): 8-16. |
| 李增强, 王建红, 张贤. 绿肥腐解及养分释放规程研究进展.中国土壤与肥料, 2017(4): 8-16. | |
| 5 | Zhang X R, Zhang W Q. Research progress of soil aggregates. Northern Horticulture, 2020(21): 131-137. |
| 张旭冉, 张卫青. 土壤团聚体研究进展. 北方园艺, 2020(21): 131-137. | |
| 6 | Li P, Jia L, Chen Q Q, et al. Adaptive evaluation for agricultural sustainability of different fertilizer management options for a green manure-maize rotation system: Impacts on crop yield, soil biochemical properties and organic carbon fractions. Science of the Total Environment, 2024, 908: 168170. |
| 7 | Lv H Q, Hu F L, Yu A Z, et al. Microstructure characteristics of soil aggregates of maize farmland under different utilization patterns of green manure in a desert oasis area. Chinese Journal of Eco-Agriculture, 2022, 30(6): 952-964. |
| 吕汉强, 胡发龙, 于爱忠, 等. 荒漠绿洲区不同绿肥还田方式下玉米农田土壤团聚体微结构特征.中国生态农业学报, 2022, 30(6): 952-964. | |
| 8 | Li W J, Yang J F, Peng B F, et al. Effects of fertilization on aggregate characteristics and organic carbon distribution in a paddy soil in Dongting Lake Plain of China. Scientia Agricultura Sinica, 2014, 47(20): 4007-4015. |
| 李文军, 杨基锋, 彭保发, 等. 施肥对洞庭湖平原水稻土团聚体特征及其有机碳分布的影响.中国农业科学, 2014, 47(20): 4007-4015. | |
| 9 | Gan Y F, Xu Y H, Zhou F Z, et al. Effects of Chinese milk vetch incorporation and nitrogen reduction on different forms of Fe and Mn in aggregates of paddy soil. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1238-1248. |
| 甘雅芬, 徐永昊, 周富忠, 等. 紫云英还田与氮肥减施对水稻土团聚体中各形态铁锰含量的影响.植物营养与肥料学报, 2022, 28(7): 1238-1248. | |
| 10 | Liu X F, Liu C Z, Wang S G, et al. Effects of green manure on soil nutrients, aggregation, and distributions of carbon and nitrogen. Tianjin Agricultural Sciences, 2015, 21(9): 44-47, 56. |
| 刘小粉, 刘春增, 王守刚, 等. 套种绿肥对土壤养分、团聚性及其有机碳和全氮分布的影响. 天津农业科学, 2015, 21(9): 44-47, 56. | |
| 11 | Jia Y, Che Z X, Bao X G, et al. Effects of long-term application of green manure on water stable aggregates and carbon distribution in irrigated desert soil. Territory & Natural Resources Study, 2020(5): 49-54. |
| 贾宇, 车宗贤, 包兴国, 等. 长期施用绿肥对灌漠土水稳性团聚体及其有机碳的影响. 国土与自然资源研究, 2020(5): 49-54. | |
| 12 | Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676. |
| 13 | Barthes B, Roose E. Aggregates stability as an indicator of susceptibility to runoff and erosion; validation at several levels. Catena, 2002, 47(2): 133-149. |
| 14 | Zhao Q, Zhang X J, Ning X G, et al. Influence of winter green manure on wind erosion in farmland of north China. Journal of Arid Land Resources and Environment, 2016, 30(8): 120-124. |
| 赵秋, 张新建, 宁晓光, 等. 华北农田冬绿肥覆盖的抗风蚀研究.干旱区资源与环境, 2016, 30(8): 120-124. | |
| 15 | Qin W L, Zhang X Y, Chen S Y, et al. Crop rotation and N application rate affecting the performance of winter wheat under deficit irrigation. Agricultural Water Management, 2018, 210: 330-339. |
| 16 | Zhao Q G, Shen R F, Teng Y, et al. Pilot progress and countermeasures on farmland rotation and fallow system in the groundwater funnel area of China. Soils, 2018, 50(1): 1-6. |
| 赵其国, 沈仁芳, 滕应, 等. 我国地下水漏斗区耕地轮作休耕制度试点成效及对策建议. 土壤, 2018, 50(1): 1-6. | |
| 17 | Zou H T, Wang S N, Yan H L, et al. Effects of straw deep returning on soil structure moisture in semiarid region of Northeast China. Agricultural Research in the Arid Areas, 2014, 32(2): 52-60. |
| 邹洪涛, 王胜楠, 闫洪亮, 等. 秸秆深还田对东北半干旱区土壤结构及水分特征影响. 干旱地区农业研究, 2014, 32(2): 52-60. | |
| 18 | Liu X D, Yin G L, Wu J, et al. Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2015, 24(10): 12-21. |
| 刘晓东, 尹国丽, 武均, 等. 青藏高原东部高寒草甸草地土壤物理性状对氮元素添加的响应. 草业学报, 2015, 24(10): 12-21. | |
| 19 | Jin S F. Recommended nitrogen fertilization enhances soil carbon sequestration in China’s monsoonal temperate zone. Peer J, 2018, 6: 1-15. |
| 20 | Yang Y H, Zhang S, Wang S, et al. Yield and nutrient concentration in common green manure crops and assessment of potential for nitrogen replacement in different regions of China. Acta Prataculturae Sinica, 2020, 29(6): 39-55. |
| 杨叶华, 张松, 王帅, 等. 中国不同区域常见绿肥产量和养分含量特征及替代氮肥潜力评估. 草业学报, 2020, 29(6): 39-55. | |
| 21 | Guo X, Luo H, Xu X M, et al. Effects of litter decomposition with different qualities on soil organic carbon content and its stability in grassland on the Loess Plateau. Acta Prataculturae Sinica, 2023, 32(5): 83-93. |
| 郭鑫, 罗欢, 许雪梅, 等. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响. 草业学报, 2023, 32(5): 83-93. | |
| 22 | Qin W L, Zhi J F, Xie N, et al. Effects of partial replacement of chemical fertilizers with green manure on dry matter accumulation and yield formation of maize. Scientia Agricultura Sinica, 2024, 57(13): 2549-2567. |
| 秦文利, 智健飞, 谢楠, 等. 绿肥部分替代化肥对玉米干物质积累与产量形成的影响. 中国农业科学, 2024, 57(13): 2549-2567. | |
| 23 | Institute of Soil Science, Chinese Academy of Sciences. Determination of soil physical properties. Beijing: Science Press, 1978: 147-148. |
| 中国科学院南京土壤研究所土壤物理研究室. 土壤物理性质测定法. 北京: 科学出版社, 1978: 147-148. | |
| 24 | Bao S D. Analysis of soil and agricultural chemistry. Beijing: China Agriculture Press, 2000: 30-34. |
| 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 30-34. | |
| 25 | Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50(3): 627-633. |
| 26 | Zhang D B, Yao J Y, Chen J Y, et al. Improving soil aggregation, aggregate-associated C and N, and enzyme activities by green manure crops in the Loess Plateau of China. European Journal of Soil Science, 2019, 70(6): 1267-1279. |
| 27 | Zhang Q, Yu E J, Lin H B, et al. Distribution and sequestration of aggregate organic carbon affected by continuous different kind of green manure cultivation. Soil and Fertilizer Sciences in China, 2019(1): 71-78. |
| 张钦, 于恩江, 林海波, 等. 连续种植不同绿肥的土壤团聚体碳分布及其固持特性. 中国土壤与肥料, 2019(1): 71-78. | |
| 28 | Yan L M, Xu X, Xia J. Different impacts of external ammonium and nitrate addition on plant growth in terrestrial ecosystems: A meta-analysis. Science of the Total Environment, 2019, 686: 1010-1018. |
| 29 | Li M, Zhao J N, Qin J, et al. Effects of nitrogen addition on microbial community in soil aggregates of Stipa baicalensis steppe in Inner Mongolia, China. Acta Ecologica Sinica, 2021, 41(3): 1127-1137. |
| 李明, 赵建宁, 秦洁, 等. 氮素添加对贝加尔针茅草原土壤团聚体微生物群落的影响. 生态学报, 2021, 41(3): 1127-1137. | |
| 30 | Wang R J, Qiang J C R, Xue Y F, et al. Effect of long-term organic-manure combined with chemical fertilizers on aggregate sizes distribution and its organic and inorganic carbon on a tier soil. Scientia Agricultura Sinica, 2015, 48(23): 4678-4689. |
| 王仁杰, 强久次仁, 薛彦飞, 等. 长期有机无机肥配施改变了塿土团聚体及其有机和无机碳分布.中国农业科学, 2015, 48(23): 4678-4689. | |
| 31 | Zhang Y, Wang H D, Gao Y H, et al. Effects of multivariate flax rotation mode on soil aggregation characteristics and nitrogen content. Acta Prataculturae Sinica, 2023, 32(1): 75-88. |
| 张勇, 王海娣, 高玉红, 等. 多元胡麻轮作模式对土壤团聚体特征及氮素含量的影响. 草业学报, 2023, 32(1): 75-88. | |
| 32 | Zhang Q, Yu E J, Lin H B, et al. Stability and erodibility of aggregate affected by different continuous green manure cultivations. Research of Soil and Water Conservation, 2019, 26(2): 9-16. |
| 张钦, 于恩江, 林海波, 等. 连续种植不同绿肥作物的土壤团聚体稳定性及可蚀性特征. 水土保持研究, 2019, 26(2): 9-16. | |
| 33 | Hu W J, Pang H D, Hu X Y, et al. Influence of mulching on soil physical properties and nutrients contents of Phyllostachys edulis forest. Journal of Central South University of Forestry & Technology, 2020, 40(5): 20-27. |
| 胡文杰, 庞宏东, 胡兴宜, 等. 覆盖对毛竹林土壤物理性质及养分含量的影响. 中南林业科技大学学报, 2020, 40(5): 20-27. | |
| 34 | Li H T, Luo J X, Peng D Y, et al. Effect of ploughed-back green manures on soil physical properties and its corresponding ecological benefit. Chinese Agricultural Science Bulletin, 2013, 29(5): 172-175. |
| 李宏图, 罗建新, 彭德元, 等. 绿肥翻压还土的生态效应及其对土壤主要物理性状的影响. 中国农学通报, 2013, 29(5): 172-175. | |
| 35 | Jing Y P, Zhang J Z, Li X P, et al. Study on the effect of planting green manure crops on the improvement of saline-alkali soil in Hetao Irrigation Area. Journal of Northern Agriculture, 2019, 47(6): 42-46. |
| 景宇鹏, 张建中, 李秀萍, 等. 种植绿肥作物对河套灌区盐碱土改良效果研究. 北方农业学报, 2019, 47(6): 42-46. | |
| 36 | Duan Z L, Wang C G, Song Y. Effects of different green manure cultivation models on soil physical properties, apple quality and yield in fruit regions of Northern Shaanxi. China Fruits, 2022(1): 24-28. |
| 段志龙, 王晨光, 宋云. 陕北苹果园绿肥种植模式对土壤物理性质及果实品质和产量的影响. 中国果树, 2022(1): 24-28. | |
| 37 | Huang Y L, Lei Z S, Zheng T, et al. Effects of different nitrogen concentrations on yield and benefit of winter wheat and soil physical and chemical properties. Crops, 2020(1): 130-135. |
| 黄寅玲, 雷忠顺, 郑涛, 等. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响. 作物杂志, 2020(1): 130-135. | |
| 38 | Lv G H, Zhao S J, Wang R, et al. Effects of consecutive overturning of green manure on soil physical and biological characteristics in tobacco-planting fields. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 905-912. |
| 侣国涵, 赵书军, 王瑞, 等. 连年翻压绿肥对植烟土壤物理及生物性状的影响. 植物营养与肥料学报, 2014, 20(4): 905-912. | |
| 39 | Nie L P, Guo L W, Zheng C F, et al. Planting and incorporation of Chinese milk vetch coupled with chemical fertilizer application: Effects on the physical and chemical characters of paddy soil and rice yield. Chinese Agricultural Science Bulletin, 2021, 37(27): 65-69. |
| 聂良鹏, 郭利伟, 郑春风, 等. 种植翻压紫云英配施化肥对稻田土壤理化性状和水稻产量的影响. 中国农学通报, 2021, 37(27): 65-69. | |
| 40 | Li J, Li Q H, Li P R, et al. Effects of long-term organic inputs on distribution of aggregate size and its organic carbon content on Lou soil. Chinese Journal of Soil Science, 2012, 43(6): 1456-1460. |
| 李婕, 黎青慧, 李平儒, 等. 长期有机肥施用、秸秆还田对塿土团聚体及其有机碳含量的影响. 土壤通报, 2012, 43(6): 1456-1460. | |
| 41 | Liu X T, Cao C Y, Zheng C L, et al. Effects of long-term straw return on carbon and nitrogen contents of aggregates and crop yield in fluvo-aquic soil. Soil and Fertilizer Sciences in China, 2023(4): 25-33. |
| 刘学彤, 曹彩云, 郑春莲, 等. 长期秸秆还田对潮土土壤团聚体碳氮和作物产量的影响. 中国土壤与肥料, 2023(4): 25-33. | |
| 42 | Chen X F, Li Z P, Liu M, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China. Scientia Agricultura Sinica, 2013, 46(5): 950-960. |
| 陈晓芬, 李忠佩, 刘明, 等. 不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响. 中国农业科学, 2013, 46(5): 950-960. | |
| 43 | Han Z X, Fang J J, Wu X P, et al. Synergistic effects of organic carbon and nitrogen content in water-stable aggregates as well as microbial biomass on crop yield under long-term straw combined chemical fertilizers application. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514. |
| 韩紫璇, 房静静, 武雪萍, 等. 长期秸秆配施化肥下土壤团聚体碳氮分布、微生物量与小麦产量的协同效应. 中国农业科学, 2023, 56(8): 1503-1514. |
| [1] | 常单娜, 陈子英, 韩梅, 李正鹏, 严清彪, 吕帅磊, 周国朋, 孙小凤, 曹卫东. 毛叶苕子磷获取特征及根际特性的基因型差异[J]. 草业学报, 2024, 33(4): 122-134. |
| [2] | 魏志敏, 孙斌, 方成, 代子雯, 刘满强, 焦加国, 胡锋, 李辉信, 徐莉. 根瘤菌与固氮菌联合对毛叶苕子的促生效果[J]. 草业学报, 2021, 30(5): 94-102. |
| [3] | 何海锋, 闫承宏, 吴娜, 刘吉利, 贾瑜琀. 不同施氮水平对柳枝稷光合特性及抗旱性的影响[J]. 草业学报, 2021, 30(1): 107-115. |
| [4] | 罗文蓉, 栗文瀚, 干珠扎布, 闫玉龙, 李钰, 曹旭娟, 何世丞, 旦久罗布, 高清竹, 胡国铮. 施氮对藏北垂穗披碱草人工草地叶片功能性状和种群特征的影响[J]. 草业学报, 2018, 27(5): 51-60. |
| [5] | 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰. 立式深旋松耕对西北半干旱区土壤水分性状及马铃薯产量的影响[J]. 草业学报, 2018, 27(12): 156-165. |
| [6] | 渠晖, 陈俊峰, 程亮, 陆晓燕, 沈益新. 施氮水平对甜高粱硝酸盐含量和氮素利用特性的影[J]. 草业学报, 2016, 25(7): 168-176. |
| [7] | 渠晖, 程亮, 陈俊峰, 陆晓燕, 沈益新. 施氮水平对甜高粱主要农艺性状及其与干物质产量相关关系的影响[J]. 草业学报, 2016, 25(6): 13-25. |
| [8] | 刘佳, 张杰, 秦文婧, 杨成春, 谢杰, 项兴佳, 曹卫东, 徐昌旭. 红壤旱地毛叶苕子不同翻压量下腐解及养分释放特征[J]. 草业学报, 2016, 25(10): 66-76. |
| [9] | 刘晓东, 尹国丽, 武均, 陈建纲, 马隆喜, 师尚礼. 青藏高原东部高寒草甸草地土壤物理性状对氮元素添加的响应[J]. 草业学报, 2015, 24(10): 12-21. |
| [10] | 惠竹梅,李华,周攀,岳泰新. 行间生草对葡萄园土壤水分含量及贮水量变化的影响[J]. 草业学报, 2011, 20(1): 62-68. |
| [11] | 黄勤楼,钟珍梅,陈恩,陈钟佃,黄秀声. 施氮水平与方式对黑麦草生物学特性和硝酸盐含量的影响[J]. 草业学报, 2010, 19(1): 103-112. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||