Acta Prataculturae Sinica ›› 2013, Vol. 22 ›› Issue (4): 187-198.DOI: 10.11686/cyxb20130423
Previous Articles Next Articles
SUN Li-li1,2, CHEN Zhi-jian2, LIU Pan-dao1,2, LIAO Hong2, LIU Guo-dao1, TIAN Jiang2
Online:
2013-08-20
Published:
2013-08-20
CLC Number:
SUN Li-li, CHEN Zhi-jian, LIU Pan-dao, LIAO Hong, LIU Guo-dao, TIAN Jiang. Cloning and analysis of the phosphate transporter protein SgPT1 from Stylosanthes[J]. Acta Prataculturae Sinica, 2013, 22(4): 187-198.
方子森, 高凌花, 张恩和, 等. 人工施用氮肥、磷肥对宽叶羌活产量和质量的影响. 草业学报, 2010, 19(4): 54-60. 杨治平, 张强, 周怀平, 等. 不同施磷水平对饲用柠条营养和产量的影响. 草业学报, 2010, 19(2): 103-108. 任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响. 草业学报, 2012, 21(3): 242-249. Richardson A E, Hocking P J, Simpson R J, et al. Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 2007, 60(2): 124-143. Raghothama K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 665-693. Tian J, Wang X R, Tong Y P, et al. Bioengineering and management for efficient phosphorus utilization in crops and pastures. Current Opinion in Biotechnology, 2012, 23: 1-6. Wang X R, Shen J B, Liao H. Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops. Plant Science, 2010, 179(4): 302-306. Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiology, 2011, 156(3): 1041-1049. Qin L, Jiang H, Tian J, et al. Rhizobia enhance acquisition of phosphorus from different sources by soybean plants. Plant and Soil, 2011, 349: 25-36. Wang X R, Wang Y X, Tian J, et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 2009, 151(1): 233-240. Liang C Y, Tian J, Lam H M, et al. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Plant Physiology, 2010, 152(2): 854-865. Mitsukawa N, Okumura S, Shirano Y, et al. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proceedings of the National Academy of Sciences, USA, 1997, 94(13): 7098-7102. Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 216(1): 23-37. Smith F W, Rae A L, Hawkesford M J. Molecular mechanisms of phosphate and sulphate transport in plants. Biochimica et Biophysica Acta, 2000, 1465(1-2): 236-245. Liu F, Chang X J, Ye Y, et al. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Molecular Plant, 2011, 4(6): 1105-1122. Ai P, Sun S, Zhao J, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. The Plant Journal, 2009, 57(5): 798-809. 高佳, 刘雄伦, 刘玲, 等. 水稻磷酸盐转运蛋白Pht1 家族研究进展. 中国农学通报, 2009, 25(15): 31-34. Nagy R, Vasconcelos M J, Zhao S, et al. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology, 2006, 8(2): 186-197. Mudge S R, Rae A L, Diatloff E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal, 2002, 31(3): 341-353. Liu J, Versaw W K, Pumplin N, et al. Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. Journal of Biological Chemistry, 2008, 283(36): 24673-24681. Liu C, Muchhal U S, Uthappa M, et al. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology, 1998, 116(1): 91-99. Tamura Y, Kobae Y, Mizuno T, et al. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Bioscience Biotechnology and Biochemistry, 2012, 76(2): 309-313. 马彩艳, 刘冬成, 阳文龙, 等. 短柄草磷转运蛋白家族基因的克隆及表达分析. 分子植物育种, 2011, 9(4): 482-490. Karandashov V, Bucher M. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 2005, 10(1): 22-29. Daram P, Brunner S, Persson B L, et al. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta, 1998, 206(2): 225-233. Saier M H. Families of proteins forming transmembrane channels. Journal of Membrane Biology, 2000, 175(3): 165-180. 杨存义, 刘灵, 沈宏, 等. 植物Pht1家族磷转运子的分子生物学研究进展. 分子植物育种, 2006, 4(2): 153-159. Muchhal U S, Pardo J M, Raghothama K G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 1996, 93(19): 10519-10523. Misson J, Thibaud M C, Bechtold N, et al. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Molecular Biology, 2004, 55(5): 727-741. 段海燕, 徐芳森, 王运华. 植物体内磷转运子的研究进展. 华中农业大学学报, 2001, 20(5): 506-510. Nagarajan V K, Jain A, Poling M D, et al. Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology, 2011, 156(3): 1149-1163. Qin L, Zhao J, Tian J, et al. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean. Plant Physiology, 2012, 159(4): 1634-1643. Javot H, Penmetsa R V, Terzaghi N, et al. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA, 2007, 104(5): 1720-1725. Liu G D, Phaikaew C, Stür W W. Status of Stylosanthes development in other countries. II. Stylosanthes development and utilization in China and south-east Asia. Tropical Grasslands, 1997, 31: 460-466. Noble A D, Orr D M, Middleton C H, et al. Legumes in native pasture -asset or liability? A case history with stylo. Tropical Grasslands, 2000, 34: 199-206. Du Y M, Tian J, Liao H, et al. Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Annals of Botany, 2009, 103(8): 1239-1247. 陈志坚, 严炜, 孙丽莉, 等. 锰毒对柱花草苗期生长及铁镁吸收的影响. 热带作物学报, 2011, 32(1): 142-146. Murphy J, Riley J R. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 1962, 27(1): 31-36. Tian J, Venkatachalam P, Liao H, et al. Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.). Planta, 2007, 227(1): 151-165. 李立芹. 农作物Pht1家族磷转运体蛋白的生物信息学分析. 作物杂志, 2011, (3): 20-24. Yang C Y, Liu L, Shen H, et al. Advances in the molecular biology of Pht1 family phosphate transporters in plants. Molecular Plant Breeding, 2006, 4(2): 153-159. Shin H, Shin H S, Dewbre G R, et al. Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low-and high-phosphate environments. The Plant Journal, 2004, 39(4): 629-642. Smith F W, Mudge S R, Rae A L, et al. Phosphate transport in plants. Plant and Soil, 2003, 248: 71-83. Paszkowski U, Kroken S, Roux C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, USA, 2002, 99(20): 13324-13329. Ming F, Lu Q, Wang W, et al. Cloning, expression and function of phosphate transporter encoded gene in Oryza sativa L. Science in China Series C Life Sciences, 2006, 49(5): 409-413. Karthikeyan A S, Varadarajan D K, Mukatira U T, et al. Regulated expression of Arabidopsis phosphate transporters. Plant Physiology, 2002, 130(1): 221-233. Chiou T J, Liu H, Harrison M J. The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. The Plant Journal, 2001, 25(3): 281-293. Leggewie G, Willmitzer L, Riesmeier J W. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. The Plant Cell, 1997, 9(3): 381-392. Remy E, Cabrito T R, Batista R A, et al. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytologist, 2012, 195(2): 356-371. Liu H, Trieu A T, Blaylock L A, et al. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions, 1998, 11(1): 14-22. Maeda D, Ashida K, Iguchi K, et al. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology, 2006, 47(7): 807-817. 郭强, 孙淑斌, Ling Y, 等. 水稻中的磷转运蛋白基因在异源表达系统中的功能分析. 中国水稻科学, 2008, 22(3): 227-233. Sun S B, Gu M, Cao Y, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in Phosphate-replete rice. Plant Physiology, 2012, 159(4): 1571-1581. Jia H F, Ren H Y, Gu M, et al. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiology, 2012, 156(3): 1164-1175. Javot H, Penmetsa R V, Breuillin F, et al. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. The Plant Journal, 2011, 68(6): 954-965. Xu G H, Chague V, Melamed-Bessudo C, et al. Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. Journal of Experimental Botany, 2007, 58(10): 2491-2501. Remy E, Cabrito T R, Batista R A, et al. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytologist, 2012, 195(2): 356-371. Chen A Q, Gu M, Sun S B, et al. Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytologist, 2011, 189(4): 1157-1169. Bari R, Datt Pant B, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 2006, 141(3): 988-999. Schunmann P H, Richardson A E, Vickers C E, et al. Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiology, 2004, 136(4): 4205-4214. |
[1] | XU Li-ming,ZHANG Zhen-bao,LIANG Xiao-ling,LU wen,ZHANG Chen-lu,HUANG Feng-zhu,WANG lei,ZHANG Su-zhi. Advances in genetic engineering for drought tolerance in plants [J]. Acta Prataculturae Sinica, 2014, 23(6): 293-303. |
[2] | SONG Hui,NAN Zhi-biao,CAI Xiao-ning,ZHONG Xiao-xian,GU Hong-ru. Clone and sequence analysis of 5’RACE of PvVP1 in Paspalum vaginatum [J]. Acta Prataculturae Sinica, 2014, 23(5): 168-174. |
[3] | WANG Jia,ZHENG Lin-lin,GU Tian-pei,WANG Xue-feng,WANG Ying-chun. Cloning and expression analysis of two WRKY transcription factors from the rare recretohalophyte Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2014, 23(4): 122-129. |
[4] | CUI Tong-xia, BAI Jiang-ping, WEI Gui-ming, ZHAO Xu, WANG Di, ZHANG Jin-wen. Red light induced SGT3 gene expression and functional analysis of the SGT3 promoter in potato [J]. Acta Prataculturae Sinica, 2014, 23(2): 196-206. |
[5] | ZHOU Zi-hang, LI Zhen, JIAO Jian, LI Yi, LIN Fan. Analysis of clonal growth patterns and branching architecture of Nitraria tangutorum clonal ramet in the Southern margin area of the Tengger Desert [J]. Acta Prataculturae Sinica, 2014, 23(1): 12-21. |
[6] | WANG Li1,2,3, ZHANG Jun-lian, ZHANG Jin-wen, LIU Yu-hui, Bai Jiang-ping, YU Bin, YANG Hong-yu, WANG Di. Cloning and analysis of sequence characteristics of cDNA encoding the AtHKT1 gene from Arabidopsis thaliana leaves [J]. Acta Prataculturae Sinica, 2013, 22(6): 230-238. |
[7] | ZHENG Lin-lin, WANG Jia, HE Long-mei, WANG Xue-feng, WANG Ying-chun. Over-expression vector construction and genetic transformation of a protein kinase NtCIPK2 from Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2013, 22(6): 223-229. |
[8] | HU Ke,YAN Xue-feng,LI Dan,TANG Xiao-mei,YANG Hong,WANG Yan,DENG Hong-yuan,MA Xin-rong. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD [J]. Acta Prataculturae Sinica, 2013, 22(5): 72-83. |
[9] | CUI Hang, LI Li-ying, XIE Xiao-lin, ZHU Hong-hui, YAO Qing. Differences in root architecture of several Stylosanthes genotypes and their phosphorus efficiency [J]. Acta Prataculturae Sinica, 2013, 22(5): 265-271. |
[10] | ZHENG Lin-lin, ZHANG Hui-rong, HE Long-mei, WANG Ying-chun. Isolation and expression analysis of a plasma membrane Na+/H+ antiporter from Nitraria tangutorum [J]. Acta Prataculturae Sinica, 2013, 22(4): 179-186. |
[11] | ZHANG Le-xin, SU Man, MA Tian, MA Xing-yong, YAN Xue-qing, PENG Xian-jun, CHEN Shuang-yan, CHENG Li-qin, LIU Gong-she. Cloning and analysis of the Δ1-pyrroline-5-carboxylate synthetase (LcP5CS1)from Leymus chinensis [J]. Acta Prataculturae Sinica, 2013, 22(4): 197-204. |
[12] | LI Jian, ZHANG Jin-Lin, WANG Suo-Min, GUO Qiang. Cloning and bio-infomatical analysis of the high-affinity K+ transporter gene PutHKT2;1 from the halophyte Puccinellia tenuiflora [J]. Acta Prataculturae Sinica, 2013, 22(2): 140-149. |
[13] | LIU Ying, CAI Hua, LIU Jing, BAI Xi, JI Wei, ZHU Yan-ming. Transformation of the GsCRCK gene into Medicago sativa cv. Nongjing No.1 and salt tolerance analysis in transgenic plants [J]. Acta Prataculturae Sinica, 2013, 22(2): 150-157. |
[14] | REN Ai-qin, YI Jin, GAO Hong-wen, LI Jun, WANG Xue-min. Cloning and expression analysis of the promoter of Caragana korshinskii gene [J]. Acta Prataculturae Sinica, 2013, 22(2): 165-170. |
[15] | SU Shi-ping, LI Yi, CHONG Pei-fang, GAO Qian. Correlation analysis of phenotypic traits of Reaumuria soongorica seed in different natural populations in the Gansu Corridor [J]. Acta Prataculturae Sinica, 2013, 22(1): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||