Reference:[1]Thompson A M, Hogan K B, Hoffman J S. Methane reduction:implications for global warming and atmospheric chemical change[J]. Atmospheric Environment, 1992, 26: 2665-2668.[2]Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248: 1217-1219.[3]Schnell S, King G M. Responses of methane trophic activity in soils and cultures to water stress[J]. Global Change Biology, 1996, 3(4): 351-362.[4]Houghton J T, Ding Y, Lenny Bernstein, et al. IPCC, Climate Change 2007: The Scientific Basis[M]. Cambridge UK: Cambridge University Press, 2001: 38-41.[5]Dlugokencky E J, Bruhwiler L, White J W C,et al. Observational constraints on recent increases in the atmospheric CH4 burden[J]. Geophysical Research Letters, 2009, 36: L18803.[6]Seiler W, Conrad R, Scharffe K. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils[J]. Journal of Atmospheric Chemistry, 1984, 1: 171-186. [7]Krüger M, Eller G, Conrad R, et al. Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors[J]. Global Change Biology, 2002, 8(3): 265-280.[8]Wassmann R, Neue H U, Bueno C, et al. Methane production capacities of different rice soils derived from inherent and exogenous substrates[J]. Plant and Soil, 1998, 203(2): 227-237.[9]Wang Z P, Zeng D, Patrick W H. Characteristics of methane oxidation in a flooded rice soil profile[J]. Nutrient Cycling in Agroecosystems, 1997, 49(1): 97-103.[10]Putkinen A, Juottonen H, Juutinen S,et al. Archaeal rRNA diversity and methane production in deep boreal peat[J]. FEMS Microbiology Ecology, 2009, 70(1): 87-98.[11]Nyknen H, Vasander H, Huttunen J T, et al. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland[J]. Plant and Soil, 2002, 242(1): 147-155.[12]Wagner D, Pfeiffer E M. Two temperature optima of methane production in a typical soil of the Elbe river marshland[J]. FEMS Microbiology Ecology, 1997, 22(2): 145-153.[13]Sutton-Grier A E, Megonigal J P. Plant species traits regulate methane production in freshwater wetland soils[J]. Soil Biology and Biochemistry, 2011, 43(2): 413-420.[14]Gonsalves M J, Fernandes C E G, Fernandes S O,et al. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea[J]. Environmental Monitoring and Assessment, 2011, 182(1-4): 385-395.[15]Min H, Chen Z Y, Chen M Z. Effect of environmental factors on Methane-Oxidizing activity in paddy soil[J]. Acta Pedologica Sinica, 2002, (5): 686-692.[16]Chen Z Y, Min H, Wu W X. Effect of mineral nutrition ions on the activity of methane oxidation in paddy soil[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 219-223. [17]Li P F, Zhao N, Lin D H, et al. Soil methane production potential and reaction to slag adding in the paddy fields of Min River entrance[J]. Subtropical Agriculture Research, 2010, 6(4): 261-263.[18]Zheng J F, Zhang P J, Pan G X, et al. Effect of long term different fertilization on methane oxidation potential and diversity of methanotrophs of paddy soil[J]. Acta Ecologica Sinica, 2008, (10): 4864-4872. [19]Liu Z X, Hao Q J, Zhu T. Primary study of methane oxidation from dryland in the Sanjiang Plain[J]. Journal of Southwest University(Natural Science), 2011, 33(1): 85-90. [20]Wang C K, Lv X G, Cai Z C, et al. Influence of nitrogen fertilizer on methane oxidation in mire soil of Sangjiang Plain[J]. Scientia Geographica Sinica, 2005, (4): 490-494. [21]Wang C K, Lv X G, Cai Z C, et al. Methane uptake in the soils of Sanjiang Plain, Northeast China[J]. Acta Scientiae Circumstantiae, 2004, (5): 939-941. [22]Ding W X, Cai Z C. Effect of temperature on atmospheric CH4 oxidation in soils[J]. Chinese Journal of Ecology, 2003, 22(3): 54-58. [23]Wei J. A pimary study on methane consumption by forest soils from different zones and its controlling factors[D]. Nanjing: Nanjing Agricultural University, 2007. [24]Mo J M, Fang Y T, Li D J, et al. Soil CO2 emission and CH4 uptake in the main forests of Dinghushan in subtropical China[J]. Guihaia, 2006, 26(2): 142-147. [25]Zhang X J, Xu H, Chen G X. Important factors controlling rates of N2O emission and CH4 oxidation from forest soil[J]. Environmental Science, 2002, 23(5): 8-12. [26]Yang H X. Emission and consumption of CH4、CO2 in coastal wetland of Yangtze estuary[D]. Shanghai:East China Normal University, 2006. [27]Wang Q. The emission of greenhouse gases from the chongming Dongtan Wetland Ecosystem and its mechanism[D]. Shanghai:East China Normal University, 2006. [28]Wang W Q, Zeng C S, Tong C. Methane production and oxidation capacities of soil from the reed marsh of the Minjiang River estuary[J]. Wetland Science, 2008, 6(1): 60-68. [29]Gao J Y. Study on methane production and oxidation potential of phragmites australis marsh soil in Minjiang River Estuary[D]. Fuzhou: Fujian Normal University, 2012. [30]Wang C K, Lv X G, Zhou H R, et al. Studies on methane oxidation by bog soils in Zoige Plateau[J]. China Environmental Science, 2004, 24(6): 646-649. [31]Wang D X, Ding W X, Wang Y Y. Influence of major environmental factors on difference of methane emission from zoige plateau and Sanjiang Plain Wetlands[J]. Wetland Science, 2003, 1(1): 63-67. [32]Wang C, Lin H L. An integrated orderly classification system of natural wetland and its application in China[J]. Acta Prataculturae Sinica, 2012, 21(1): 262-272. [33]Wang L L, Sun Z G, Mou X J, et al. A preliminary study on carbon dioxide, methane and nitrous oxide fluxes from intertidal flat wetlands of the Yellow River estuary[J]. Acta Prataculturae Sinica, 2011, 20(3): 51-61. [34]Sun Z G, Wang L L, Tian H Q, et al. Fluxes of nitrous oxide and methane in different coastal Suaeda salsamarshes of the Yellow River estuary, China[J]. Chemosphere, 2013, 90: 856-865. [35]Song H L, Sun Z G, Sun J K, et al. Effects of nitrogen and phosphorus on seed germination and seedling growth of Suaeda salsa under different growth conditions of the Yellow River Estuary[J]. Acta Prataculturae Sinica, 2012, 21(6): 30-41. [36]State Oceanic Administration People's Republic of China. 2011 China state of the marine environment[BE / OL] (2012-07-10)[2013-03-20]. http: //www. coi. gov. cn/gongbao/nrhuanjing/nr2011/201207/t20120710_23199. html.[37]Mou X J, Sun Z G, Liu X T. Biomass spatial fractal characteristics and phosphorus nutrient dynamics of Suaeda salsa under different growth conditions of the intertidal zone in the Yellow River estuary[J]. Acta Prataculturae Sinica, 2012, 21(3): 45-53. [38]Drr H, Katruff L, Levin I. Soil texture parameterization of the methane uptake in aerated soils[J]. Chemosphere, 1992, 26: 697-713. [39]Kruse C W, Moldrup P, Iversen N. Modeling diffusion and reaction in soil II. Atmospheric methane diffusion and consumption in a forest soil[J]. Soil Science, 1996, 161: 355-365. [40]Wang C K, Lv X G, Cai Z C, et al. Effects of land-use on methane oxidation potential in lessive[J]. Geographical Research, 2006, 25(2): 335-341. [41]Boeckx P, Van Cleemput O, Villaralvo I. Methane oxidation in soils with different textures and land use[J]. Nutrient Cycling in Agroecosystems, 1997, 49: 91-95. [42]Hütsch B W. Tillage and land use effects on methane oxidation rates and their vertical profiles in soil[J]. Biology and Fertility of Soils, 1998, 27(3): 284-292. [43]Shan L W, Feng G Y, Fan S H. CH4 production fungus research progress[J]. Journal of Microbiology, 2003, 23(6): 42-46. [44]Min H, Chen Z Y, Wu W X, et al. Effect of carbon and nitrogen sources on the activity of methane oxidization in a paddy rice soil[J]. Acta Scientiae Circumstantiae, 2002, 22(1): 70-75. [45]Schnell S, King G M. Mechanistic analysis of ammonium inhibition of atmospheric consumption in forest soil[J]. Applied Environmental Microbiology, 1994, 10: 3514-3521. [46]Dong H F, Yu J B, Sun Z G, et al. Spatial distribution characteristics of organic carbon in the soil-plant systems in the Yellow River Estuary Tidal Flat Wetland[J]. Environmental Science, 2010, 31(6): 1594-1599. [47]Ding W X, Cai Z C. Marsh CH4 emissions and its main influencing factors[J].Scientia Geographica Sinica,2002,22(5): 619-625.[48]Wagner D, Pfeiffer E M, Bock E. Methane production in aerated marshland and model soils: effects of microflora and soil texture[J]. Soil Biology & Biochemistry, 1999, 31: 999-1006. [49]Xu H, Cai Z C, Yagi K. Methane production potentials of rice paddy soils and its affecting factors[J]. Acta Pedologica Sinica, 2008, 45(1): 98-104. [50]Zhang G Y, Fang B S, Min F, et al. Methanol promotes methane oxidation by greenhouse soil and its microbial mechanism[J]. Ecology and Environment Sciences, 2003, 12(4): 469-472. [51]Jiang H H. River estuary tidal flat wetland system of CO2 and CH4 flux characteristics and influence mechanism research[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2011. [52]Jensen S, Pr,iemé A. Methanol improves methane uptake in starved methanotrophic microorganisms[J]. Applied Environmental Microbiology, 1998, 64: 1143-1146. [53]Yan X Y, Cai Z C. Research of CH4 oxidation in paddy soil[J]. Chinese Journal of Applied Ecology, 1997, 8(6): 589-594. [54]Joulian C, Escoffier S, Le Mer J, et al. Populations and potential activities of methanogens and methanotrophs in rice fields: relations with soil properties[J]. Europe Journal of Soil Biology, 1997, 33: 105-116. 参考文献:[1]Thompson A M, Hogan K B, Hoffman J S. Methane reduction:implications for global warming and atmospheric chemical change[J]. Atmospheric Environment, 1992, 26: 2665-2668.[2]Rodhe H. A comparison of the contribution of various gases to the greenhouse effect[J]. Science, 1990, 248: 1217-1219.[3]Schnell S, King G M. Responses of methane trophic activity in soils and cultures to water stress[J]. Global Change Biology, 1996, 3(4): 351-362.[4]Houghton J T, Ding Y, Lenny Bernstein,et al. IPCC, Climate Change 2007: The Scientific Basis[M]. Cambridge UK: Cambridge University Press, 2001: 38-41.[5]Dlugokencky E J, Bruhwiler L, White J W C,et al. Observational constraints on recent increases in the atmospheric CH4 burden[J]. Geophysical Research Letters, 2009, 36: L18803.[6]Seiler W, Conrad R, Scharffe K. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils[J]. Journal of Atmospheric Chemistry, 1984, 1: 171-186. [7]Krüger M, Eller G, Conrad R,et al. Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors[J]. Global Change Biology, 2002, 8(3): 265-280.[8]Wassmann R, Neue H U, Bueno C,et al. Methane production capacities of different rice soils derived from inherent and exogenous substrates[J]. Plant and Soil, 1998, 203(2): 227-237.[9]Wang Z P, Zeng D, Patrick W H. Characteristics of methane oxidation in a flooded rice soil profile[J]. Nutrient Cycling in Agroecosystems, 1997, 49(1): 97-103.[10]Putkinen A, Juottonen H, Juutinen S,et al. Archaeal rRNA diversity and methane production in deep boreal peat[J]. FEMS Microbiology Ecology, 2009, 70(1): 87-98.[11]Nyknen H, Vasander H, Huttunen J T,et al. Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland[J]. Plant and Soil, 2002, 242(1): 147-155.[12]Wagner D, Pfeiffer E M. Two temperature optima of methane production in a typical soil of the Elbe river marshland[J]. FEMS Microbiology Ecology, 1997, 22(2): 145-153.[13]Sutton-Grier A E, Megonigal J P. Plant species traits regulate methane production in freshwater wetland soils[J]. Soil Biology and Biochemistry, 2011, 43(2): 413-420.[14]Gonsalves M J, Fernandes C E G, Fernandes S O,et al. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea[J]. Environmental Monitoring and Assessment, 2011, 182(1-4): 385-395.[15]闵航, 陈中云, 陈美慈. 水稻田土壤甲烷氧化活性及其环境影响因子的研究[J]. 土壤学报, 2002, (5): 686-692.[16]陈中云, 闵航, 吴伟祥. 不同离子对水稻田土壤甲烷氧化活性影响的研究[J]. 植物营养与肥料学报, 2002, 8(2): 219-223. [17]李鹏飞, 赵娜, 林德华, 等. 闽江河口稻田土壤甲烷产生潜力及其对炉渣添加的响应[J]. 亚热带农业研究, 2010, 6(4): 261-263.[18]郑聚锋, 张平究, 潘根兴, 等. 长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化[J]. 生态学报, 2008, (10): 4864-4872. [19]刘志祥, 郝庆菊, 祝滔. 三江平原旱田土壤甲烷氧化的初步研究[J]. 西南大学学报(自然科学版), 2011, 33(1): 85-90. [20]王长科, 吕宪国, 蔡祖聪, 等. 氮肥对三江平原沼泽土氧化CH4的影响[J]. 地理科学, 2005, (4): 490-494. [21]王长科, 吕宪国, 蔡祖聪, 等. 东北三江平原土壤氧化CH4研究[J]. 环境科学学报, 2004, (5): 939-941. [22]丁维新, 蔡祖聪. 温度对土壤氧化大气CH4的影响[J]. 生态学杂志, 2003, 22(3): 54-58. [23]魏晋. 不同区域森林土壤甲烷氧化及其影响因子的初步研究[D]. 南京: 南京农业大学, 2007. [24]莫江明, 方运霆, 李德军, 等. 鼎湖山主要森林土壤CO2排放和CH4吸收特征[J]. 广西植物, 2006, 26(2): 142-147. [25]张秀君, 徐慧, 陈冠雄. 影响森林土壤N2O排放和CH4吸收的主要因素[J]. 环境科学, 2002, 23(5): 8-12. [26]杨红霞. 长江口滨岸湿地CH4和CO2的排放和吸收[D]. 上海:华东师范大学, 2006. [27]汪青. 崇明东滩湿地生态系统温室气体排放及机制研究[D]. 上海:华东师范大学, 2006. [28]王维奇, 曾从盛, 仝川. 闽江口芦苇湿地土壤甲烷产生与氧化能力研究[J]. 湿地科学, 2008, 6(1): 60-68. [29]高君颖. 闽江河口芦苇湿地土壤甲烷产生与氧化潜力研究[D]. 福州: 福建师范大学, 2012. [30]王长科, 吕宪国, 周华荣, 等. 若尔盖高原沼泽土壤氧化CH4的研究[J]. 中国环境科学, 2004, 24(6): 646-649. [31]王德宣, 丁维新, 王毅勇. 若尔盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素[J]. 湿地科学, 2003, 1(1): 63-67. [32]王翀, 林慧龙. 中国内陆天然湿地的类型特征及分布规律-Ⅰ类的划分[J]. 草业学报, 2012, 21(1): 262-272. [33]王玲玲, 孙志高, 牟晓杰, 等. 黄河口滨岸潮滩湿地 CO2、CH4和N2O 通量特征初步研究[J]. 草业学报, 2011, 20(3): 51-61. [34]Sun Z G, Wang L L, Tian H Q,et al. Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China[J]. Chemosphere, 2013, 90: 856-865. [35]宋红丽, 孙志高, 孙景宽, 等. 氮、磷输入对黄河口潮滩湿地不同生境下碱蓬种子萌发与幼苗生长的影响[J]. 草业学报, 2012, 21(6): 30-41. [36]国家海洋局. 2011年中国海洋环境状况公报[BE/OL]. (2012-07-10)[2013-03-20]. http: //www. coi. gov. cn/gongbao/nrhuanjing/nr2011/201207/t20120710_23199. html.[37]牟晓杰, 孙志高, 刘兴土. 黄河口滨岸潮滩不同生境下翅碱蓬生物量空间分形特征与磷营养动态[J]. 草业学报, 2012, 21(3):45-53. [38]Drr H, Katruff L, Levin I. Soil texture parameterization of the methane uptake in aerated soils[J]. Chemosphere, 1992, 26: 697-713. [39]Kruse C W, Moldrup P, Iversen N. Modeling diffusion and reaction in soil II. Atmospheric methane diffusion and consumption in a forest soil[J]. Soil Science, 1996, 161: 355-365. [40]王长科, 吕宪国, 蔡祖聪, 等. 土地利用方式对白浆土氧化甲烷的影响[J]. 地理研究, 2006, 25(2): 335-341. [41]Boeckx P, Van Cleemput O, Villaralvo I. Methane oxidation in soils with different textures and land use[J]. Nutrient Cycling in Agroecosystems, 1997, 49: 91-95. [42]Hütsch B W. Tillage and land use effects on methane oxidation rates and their vertical profiles in soil[J]. Biology and Fertility of Soils, 1998, 27(3): 284-292. [43]单丽伟, 冯贵颖,范三红. 产CH4菌研究进展[J]. 微生物学杂志, 2003, 23(6): 42-46. [44]闵航, 陈中云, 吴伟祥, 等. 碳、氮物质对水稻田土壤CH4氧化活性影响的研究[J]. 环境科学学报, 2002, 22(1): 70-75. [45]Schnell S, King G M. Mechanistic analysis of ammonium inhibition of atmospheric consumption in forest soil[J]. Applied Environmental Microbiology, 1994, 10: 3514-3521. [46]董洪芳, 于君宝, 孙志高, 等. 黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征[J]. 环境科学, 2010, 31(6): 1594-1599. [47]丁维新,蔡祖聪.沼泽CH4排放及其主要影响因素[J].地理科学,2002,22(5): 619-625.[48]Wagner D, Pfeiffer E M, Bock E. Methane production in aerated marshland and model soils: effects of microflora and soil texture[J]. Soil Biology & Biochemistry, 1999, 31: 999-1006. [49]徐华, 蔡祖聪, 八木一行. 水稻土甲烷产生潜力及其影响因素[J]. 土壤学报, 2008, 45(1): 98-104. [50]张光亚, 方柏山, 闵航, 等. 甲醇对土壤甲烷氧化的影响及其微生物学机理[J]. 生态环境, 2003, 12(4): 469-472. [51]姜欢欢. 黄河口潮滩湿地系统CO2和CH4通量特征与影响机制研究[D]. 北京: 中国科学院研究生院, 2011. [52]Jensen S, Priemé A. Methanol improves methane uptake in starved methanotrophic microorganisms[J]. Applied Environmental Microbiology, 1998, 64: 1143-1146. [53]颜晓元, 蔡祖聪. 水稻土中CH4氧化的研究[J]. 应用生态学报, 1997, 8(6): 589-594. [54]Joulian C, Escoffier S, Le Mer J,et al. Populations and potential activities of methanogens and methanotrophs in rice fields: relations with soil properties[J]. Europe Journal of Soil Biology, 1997, 33: 105-116. |