Reference:[1]Li J Q, Wang L H, Zhan Q W, et al. Genetic diversity of 20 ryegrass accessions by SRAP markers[J]. Acta Prataculturae Sinica, 2013, 22(2): 158-164.[2]Han G H, Xiang S Q, Wang W X, et al. Establishment and application of SCoT molecular marker system for citrus[J]. Acta Horticulturae Sinica, 2011, 38(7): 1243-1250.[3]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene targeted markers in plants[J]. Plant Molecular Biology Reporter, 2009, 27: 86-93.[4]He Q Y, Wang W B, Yang H Y, et al. Optimization of SCoT reaction system and genetic diversity of different fall dormancy alfalfa[J]. Acta Prataculturae Sinica, 2012, 21(2): 133-140.[5]Luo C, He X H, Chen H, et al. Analysis of diversity and relationships among mango cultivars using start codon targeted (SCoT) markers[J]. Biochemical Systematics and Ecology, 2010, 38: 1176-1184.[6]Zeng H Y, Wei L, Liu P, et al. Genetic diversity of energy grass Arundo donax revealed by ISSR markers[J]. Acta Prataculturae Sinica, 2013, 22(3): 266-273.[7]Zeng L, Yuan Q H, Wang F, et al. Genetic diversity analysis of Agropyron germplasm resources by ISSR[J]. Acta Prataculturae Sinica, 2013, 22(1): 260-267. [8]Xiong F Q, Jiang J, Zhong R C, et al. Application of SCoT molecular marker in genus arachis[J]. Acta Agronomica Sinica, 2010, 36(12): 2055-2061.[9]Guo D L, Zhang J Y, Liu C H. Genetic diversity in some grape varieties revealed by SCoT analyses[J]. Molecular Biology Reports, 2012, 39: 5307-5313.[10]Luo C, He X H, Chen H, et al. Genetic relationship and diversity of Mangifera indicaL.: revealed through SCoT analysis[J]. Genetic Resources and Crop Evolution, 2012, 59: 1505-1515.[11]Xiong F Q, Zhong R C, Han Z Q, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut(Arachis hypogaea L.) genotypes[J]. Molecular Biology Reports, 2011, 38: 3487-3494.[12]Gorji A M, Poczai P, Polgar Z, et al. Efficiency of arbitrarily amplified dominant markers (SCOT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato[J]. American Journal of Potato Research, 2011, 88: 226-237.[13]Lindner R, Garcia A. Geographic distribution and genetic resources of Dactylis in Galicia (northwest Spain)[J]. Genetic Resources and Crop Evolution, 1997, 44: 499-507.[14]Bushman B S, Larson S R, Tuna M, et al. Orchardgrass(Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability[J]. Theoretical and Applied Genetics, 2011,123: 119-129.[15]Lumaret R. Cytology, genetics, and evolution in the genus Dactylis[J]. Critical Reviews in Plant Sciences, 1988, 7: 55-89.[16]Sanada Y, Tamura K, Yamada T. Relationship between water soluble carbohydrates in fall and spring and vigor of spring regrowth in orchardgrass[J]. Crop Science, 2010, 50: 380-390.[17]Jafari A, Naseri H. Genetic variation and correlation among yield and quality traits in cocksfoot (Dactylis glomerataL.)[J]. Journal of Agricultural Science, 2007, 145: 599-610.[18]Peng Y, Zhang X Q. Progress in studies on genetic diversity of dactylis glomerata L.[J]. Journal of Plant Genetic Biology, 2003, 4(2): 179-183.[19]Stebbins G L, Zohary D. Cytogenetics and Evolutionary Studies in the Genus Dactylis L. Morphology, Distribution and Interrelationships of the Diploid Subspecies[M]. California: University of California Press, 1959, 31: 1-40.[20]Zhong S. The agronomic characters of the hybrid progeny of wild Dactylis glomerata[J]. Acta Prataculturae Sinica, 2007, 16(1): 69-74.[21]Zhang X Q, Du Y, Zheng D C. Study on PMC meiosis. pollen fertility and seed setting in diploid and tetraploid of Dactylis glomerata[J]. Chinese Journal of Grassland, 1996, (6): 38-40.[22]Shi S R, Zhang X Q, Bai S J. Esterase and peroxidase in diploid and tetraploid common Orchardgrasses[J]. Pratacultural Science, 1998, (6): 11-1[23]Xie W G, Zhang X Q, Ma X, et al. Genetic variation of Dactylis glomerata germplasm from Southwest China detected by SSR markers[J]. Acta Prataculturae Sinica, 2009, 18(4): 138-146.[24]Peng Y, Zhang X Q, Deng Y L, et al. Evaluation of genetic diversity in wild orchardgrass (Dactylis glomerata L.) based on AFLP markers[J]. Hereditas, 2008, 145: 174-181.[25]Wang G, Zhang X Q, Liu W, et al. Comparison of genetic diversity in cultivated and wild orchardgrass(Dactylis glomerata) detected by SSR markers[J]. Acta Prataculturae Sinica, 2010, 19(6): 187-196.[26]Doyle J J, Doyle J L, Brown A H D. Analysis of a polyploid complex in glycine with chloroplast and nuclear DNA[J]. Australian Systematic Botany, 1990, 3: 125-136.[27]Yeh F C, Yang R C, Boyle T. POPGENE VERSION 1.31. Microsoft Windows-based Freeware for Population Genetic Analysis. Quick User Guide[M]. University of Alberta: Center for International Forestry Research, 1999.[28]Nei M. Analysis of gene diversity in subdivided populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70: 3321-3323.[29]Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131(2): 479-491.[30]Zhang F M, Ge S. Data analysis in population genetics.I.analysis of RAPD data with AMO-VA[J]. Biodiversity Science, 2002, 10: 438-444.[31]Pavlicek A, Hrda S, Flegr J. FreeTree-free ware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia[J]. Folia Biologica, 1999, 45(3): 97.[32]Nei M, Li W H. Mathematical model for studying the genetic variation in terms of restriction endonucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76: 5269-5273.[33]Huson D H, Scornavacca C. Dendroscope 3: An interactive viewer for rooted phylogenetic trees and networks[J]. Systematic Biology, 2012, 61: 1061-1067.[34]Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.1.User Guide[M]. New York: Exeter Software, 2000.[35]Luo C, He X H, Chen H, et al. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers[J]. Biochemical Systematics and Ecology, 2011, 39: 676-684.参考文献:[1]李杰勤, 王丽华, 詹秋文, 等. 20个黑麦草品系的SRAP遗传多样性分析[J]. 草业学报, 2013, 22(2): 158-164.[2]韩国辉, 向素琼, 汪卫星, 等. 柑橘SCoT分子标记技术体系的建立及其在遗传分析中的应用[J]. 园艺学报, 2011, 38(7): 1243-1250.[3]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants[J]. Plant Molecular Biology Reporter, 2009, 27: 86-93.[4]何庆元, 王吴斌, 杨红燕, 等. 利用SCoT标记分析不同秋眠型苜蓿的遗传多样性[J]. 草业学报, 2012, 21(2): 133-140.[5]Luo C, He X H, Chen H,et al. Analysis of diversity and relationships among mango cultivars using start codon targeted (SCoT) markers[J]. Biochemical Systematics and Ecology, 2010, 38: 1176-1184.[6]曾汉元, 魏麟, 刘鹏, 等. 能源草芦竹遗传多样性的ISSR分析[J]. 草业学报, 2013, 22(3): 266-273.[7]曾亮, 袁庆华, 王方, 等. 冰草属植物种质资源遗传多样性的ISSR分析[J]. 草业学报, 2013, 22(1): 260-267.[8]熊发前, 蒋菁, 钟瑞春, 等. 目标起始密码子多态性(SCoT)分子标记技术在花生属中的应用[J]. 作物学报, 2010, 36(12): 2055-2061.[9]Guo D L, Zhang J Y, Liu C H. Genetic diversity in some grape varieties revealed by SCoT analyses[J]. Molecular Biology Reports, 2012, 39: 5307-5313.[10]Luo C, He X H, Chen H,et al. Genetic relationship and diversity of Mangifera indicaL.: revealed through SCoT analysis[J]. Genetic Resources and Crop Evolution, 2012, 59: 1505-1515.[11]Xiong F Q, Zhong R C, Han Z Q,et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut(Arachis hypogaea L.) genotypes[J]. Molecular Biology Reports, 2011, 38: 3487-3494.[12]Gorji A M, Poczai P, Polgar Z,et al. Efficiency of arbitrarily amplified dominant markers (SCOT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato[J]. American Journal of Potato Research, 2011, 88: 226-237.[13]Lindner R, Garcia A. Geographic distribution and genetic resources of Dactylis in Galicia (northwest Spain)[J]. Genetic Resources and Crop Evolution, 1997, 44: 499-507.[14]Bushman B S, Larson S R, Tuna M,et al. Orchardgrass(Dactylis glomerata L.) EST and SSR marker development, annotation, and transferability[J]. Theoretical and Applied Genetics, 2011, 123: 119-129.[15]Lumaret R. Cytology, genetics, and evolution in the genus Dactylis[J]. Critical Reviews in Plant Sciences, 1988, 7: 55-89.[16]Sanada Y, Tamura K, Yamada T. Relationship between water-soluble carbohydrates in fall and spring and vigor of spring regrowth in orchardgrass[J]. Crop Science, 2010, 50: 380-390.[17]Jafari A, Naseri H. Genetic variation and correlation among yield and quality traits in cocksfoot(Dactylis glomerata L.)[J]. Journal of Agricultural Science, 2007, 145: 599-610.[18]彭燕, 张新全. 鸭茅种质资源多样性研究进展[J]. 植物遗传资源学报, 2003, 4(2): 179-183.[19]Stebbins G L, Zohary D. Cytogenetics and Evolutionary Studies in the Genus DactylisL. Morphology, Distribution and Interrelationships of the Diploid Subspecies[M]. California: University of California Press, 1959, 31: 1-40.[20]钟声. 野生鸭茅杂交后代农艺性状的初步研究[J]. 草业学报, 2007, 16(1): 69-74.[21]张新全, 杜逸, 郑德诚. 鸭茅二倍体和四倍体PMC减数分裂,花粉育性及结实性的研究[J]. 中国草地, 1996, (6): 38-40.[22]帅素容, 张新全, 白史且. 不同倍性鸭茅同工酶比较研究[J]. 草业科学, 1998, (6): 11-16.[23]谢文刚, 张新全, 马啸, 等. 中国西南区鸭茅种质遗传变异的SSR分析[J]. 草业学报, 2009, 18(4): 138-146.[24]Peng Y, Zhang X Q, Deng Y L,et al. Evaluation of genetic diversity in wild orchardgrass(Dactylis glomerata L.) based on AFLP markers[J]. Hereditas, 2008, 145: 174-181.[25]万刚, 张新全, 刘伟, 等. 鸭茅栽培驯化品种与野生材料遗传多样性比较的SSR分析[J]. 草业学报, 2010, 19(6): 187-196.[26]Doyle J J, Doyle J L, Brown A H D. Analysis of a polyploid complex in glycine with chloroplast and nuclear DNA[J]. Australian Systematic Botany, 1990, 3: 125-136.[27]Yeh F C, Yang R C, Boyle T. POPGENE VERSION 1.31. Microsoft Windows-based Freeware for Population Genetic Analysis. Quick User Guide[M]. University of Alberta: Center for International Forestry Research, 1999.[28]Nei M. Analysis of gene diversity in subdivided populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70: 3321-3323.[29]Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131(2): 479-491.[30]张富民, 葛颂. 群体遗传学研究中的数据处理方法I. RAPD数据的AMOVA分析[J]. 生物多样性, 2002, 10: 438-444.[31]Pavlicek A, Hrda S, Flegr J. FreeTree-free ware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia[J]. Folia Biologica, 1999, 45(3): 97.[32]Nei M, Li W H. Mathematical model for studying the genetic variation in terms of restriction endonucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76: 5269-5273.[33]Huson D H, Scornavacca C. Dendroscope 3: An interactive viewer for rooted phylogenetic trees and networks[J]. Systematic Biology, 2012, 61: 1061-1067.[34]Rohlf F J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.1.User Guide[M]. New York: Exeter Software, 2000.[35]Luo C, He X H, Chen H,et al. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers[J]. Biochemical Systematics and Ecology, 2011, 39: 676-684. |