Reference:
[1] Grbic M, Van Leeuwen T, Clark R M, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations[J]. Nature, 2011, 479: 487-492.
[2] Zhang T W, Shen H M, Qian X J, et al. Effects of Tetranychus urticae feeding on the chlorophyll content and two kinds of protective enzyme of white clover[J]. Chinese Bulletin of Entomology, 2013, 50(2): 395-400.
[3] He D H, Zhao X P, Jin Q H, et al. Dispersion of two-spotied spider mite, Tetranychus Urticae Koch, and its selection of host plants on farmland in ningxia[J]. Chinese Journal of Applied & Environment Biology, 2001, 7(5): 447-451.
[4] Croft B A, Vandebaan H E. Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites[J]. Experimental and Applied Acarology, 1988, 4(3): 277-300.
[5] Soderlund D M. Pyrethroids, knockdown resistance and sodium channels[J]. Pest Management Science, 2008, 64(6): 610-616.
[6] Tsagkarakou A, Van Leeuwen T, Khajehali J, et al. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two spotted spider mite Tetranychus urticae (Acari: Tetranychidae)[J]. Insect Molecular Biology, 2009, 18(5): 583-593.
[7] Kwon D H, Clark J M, Lee S H. Cloning of a sodium channel gene and identification of mutations putatively associated with fenpropathrin resistance in Tetranychus urticae[J]. Pesticide Biochemistry and Physiology, 2010, 97(2): 93-100.
[8] Feng Y N, Zhao S, Sun W, et al. The sodium channel gene in Tetranychus cinnabarinus (Boisduval): identification and expression analysis of a mutation associated with pyrethroid resistance[J]. Pest Management Science, 2011, 67(8): 904-912.
[9] Wang R W, Liu Z Q, Dong K, et al. Association of novel mutations in a sodium channel gene with fluvalinate resistance in the mite, Varroa destructor[J]. Journal of Apicultural Research, 2002, 41(12): 17-25.
[10] Liu Z, Tan J, Huang Z Y, et al. Effect of a fluvalinate resistance associated sodium channel mutation from varroa mites on cockroach sodium channel sensitivity to fluvalinate, a pyrethroid insecticide[J]. Insect Biochemistry and Molecular Biology, 2006, 36(11): 885-889.
[11] Ingles P J, Adams P M, Knipple D C, et al. Characterization of voltage sensitive sodium channel gene coding sequences from insecticide susceptible and knockdown resistant house fly strains[J]. Insect Biochemistry and Molecular Biology, 1996, 26(4): 319-326.
[12] Williamson M S, Martinez Torres D, Hick C A, et al. Identification of mutations in the housefly para type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides[J]. Molecular & General Genetics, 1996, 252(12): 51-60.
[13] Rinkevich F D, Leichter C A, Lazo T A, et al. Variable fitness costs for pyrethroid resistance alleles in the house fly, Musca domestica, in the absence of insecticide pressure[J]. Pesticide Biochemistry and Physiology, 2013, 105: 161-168.
[14] Cao X M, Zhao T Y. Molecule-based techniques for the detection of insecticde resistance in pests[J]. Acta Parasitologica et Medica Entomologica Sinica, 2006, 13(1): 57-63.
[15] Gao M, Shen R P, Zhang P, et al. Detection of beta-cypermethrin resistance in Shandong populations of Spodoptera exigua by competitive PCR amplification of specific allele[J]. Acta Phytophylacica Sinica, 2013, 40(4): 363-368.
[16] Zhao C J, Li N, Deng X M. The establishment of method for identifying SNP genotype by CRS-PCR[J]. Hereditas(Beijing), 2003, 25(3): 327-329.
[17] Liao X Y, Zhang Y F, Gu X F. Technique of PCR-ACRS for the detection of CYP21 gene mutations[J]. Chinese Journal of Medical Genetics, 2003, 20(5): 449-451.
[18] Van Leeuwen T, Vontas J, Tsagkarakou A, et al. Acaricide resistance mechanisms in the two spotted spider mite Tetranychus urticae and other important Acari: A review[J]. Insect Biochemistry and Molecular Biology, 2010, 40(8): 563-572.
[19] He H, Chen A C, Davey R B, et al. Identification of a point mutation in the para type sodium channel gene from a pyrethroid-resistant cattle tick[J]. Biochemical and Biophysical Research Communications, 1999, 261(3): 558-561.
[20] Tan J G, Liu Z Q, Wang R W, et al. Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding[J]. Molecular Pharmacology, 2005, 67(2): 513-522.
[21] O’Reilly A O, Khambay B P, Williamson M S, et al. Modelling insecticide binding sites in the voltage gated sodium channel[J]. Biochemical Journal, 2006, 396(2): 255-263.
[22] Davies T G E, O'Reilly A O, Field L M, et al. Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling[J].Pest Management Science, 2008, 64(11): 1126-1130.
[23] Gao X J. Study on resistance mechanisms and enzymology resistance monitoring of Tetranychus urticae koch to fenpropathrin[D]. Lanzhou: Gansu Agricultural University, 2012.
[24] Van Leeuwen T, Dermauw W, Grbic M, et al. Spider mite control and resistance management: does a genome help?[J] Pest Management Science, 2013, 69(2): 156-159.
[25] Wybouw N, Balabanidou V, Ballhorn D J, et al. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change[J]. Insect Biochemistry and Molecular Biology, 2012, 42(12): 881-889.
[26] Dermauw W, Wybouw N, Rombauts S, et al. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 113-122.
[27] Whittall R A, Scartezini M, Li K, et al. Development of a high-resolution melting method for mutation detection in familial hyperch olesterolaemia patients[J]. Annals of Clinical Biochemistry, 2010, 47: 44-55.
[28] Xiong L, Liang C F, Chen C, et al. Application of qPCR-HRM curve analysis and common-PCR with DNA sequencing in detection of EGFR mutations in glioma tissues[J]. New Medicine, 2012, 43(5): 327-330.
参考文献:
[1] Grbic M, Van Leeuwen T, Clark R M, et al. The genome of Tetranychus urticae reveals herbivorous pest adaptations[J]. Nature, 2011, 479: 487-492.
[2] 张廷伟, 沈慧敏, 钱秀娟, 等. 二斑叶螨刺吸胁迫对白三叶叶绿素含量和两种保护酶的影响[J]. 应用昆虫学报, 2013, 50(2): 395-400.
[3] 贺达汉, 赵晓萍, 靳巧红, 等. 宁夏地区二斑叶螨的寄主植物选择及其季节转移[J]. 环境与应用生物学报, 2001, 7(5): 447-451.
[4] Croft B A, Vandebaan H E. Ecological and genetic-factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites[J]. Experimental and Applied Acarology, 1988, 4(3): 277-300.
[5] Soderlund D M. Pyrethroids, knockdown resistance and sodium channels[J]. Pest Management Science, 2008, 64(6): 610-616.
[6] Tsagkarakou A, Van Leeuwen T, Khajehali J, et al. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae)[J]. Insect Molecular Biology, 2009, 18(5): 583-593.
[7] Kwon D H, Clark J M, Lee S H. Cloning of a sodium channel gene and identification of mutations putatively associated with fenpropathrin resistance in Tetranychus urticae[J]. Pesticide Biochemistry and Physiology, 2010, 97(2): 93-100.
[8] Feng Y N, Zhao S, Sun W, et al. The sodium channel gene in Tetranychus cinnabarinus (Boisduval): identification and expression analysis of a mutation associated with pyrethroid resistance[J]. Pest Management Science, 2011, 67(8): 904-912.
[9] Wang R W, Liu Z Q, Dong K, et al. Association of novel mutations in a sodium channel gene with fluvalinate resistance in the mite, Varroa destructor[J]. Journal of Apicultural Research, 2002, 41(1-2): 17-25.
[10] Liu Z, Tan J, Huang Z Y, et al. Effect of a fluvalinate-resistance-associated sodium channel mutation from varroa mites on cockroach sodium channel sensitivity to fluvalinate, a pyrethroid insecticide[J]. Insect Biochemistry and Molecular Biology, 2006, 36(11): 885-889.
[11] Ingles P J, Adams P M, Knipple D C, et al. Characterization of voltage-sensitive sodium channel gene coding sequences from insecticide-susceptible and knockdown-resistant house fly strains[J]. Insect Biochemistry and Molecular Biology, 1996, 26(4): 319-326.
[12] Williamson M S, Martinez-Torres D, Hick C A, et al. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides[J]. Molecular & General Genetics, 1996, 252(1-2): 51-60.
[13] Rinkevich F D, Leichter C A , Lazo T A, et al. Variable fitness costs for pyrethroid resistance alleles in the house fly, Musca domestica, in the absence of insecticide pressure[J]. Pesticide Biochemistry and Physiology, 2013, 105: 161-168.
[14] 曹晓梅, 赵彤言. 害虫抗药性分子检测技术发展现状[J]. 寄生虫与医学昆虫学报, 2006, 13(1): 57-63.
[15] 高明, 申瑞平, 张鹏, 等. 竞争性特异等位基因PCR检测山东甜菜夜蛾对高效氯氰菊酯的抗性[J]. 植物保护学报, 2013, 40(4): 363-368.
[16] 赵春江, 李宁, 邓学梅. 应用创造酶切位点法检测单碱基突变[J]. 遗传, 2003, 25(3): 327-329.
[17] 廖相云, 张雅芬, 顾学范. 扩增引进限制性酶切位点技术对两种CYP21基因突变的检测[J]. 中华医学遗传学杂志, 2003, 20(5): 449-451.
[18] Van Leeuwen T, Vontas J, Tsagkarakou A, et al. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review[J]. Insect Biochemistry and Molecular Biology, 2010, 40(8): 563-572.
[19] He H, Chen A C, Davey R B, et al. Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick[J]. Biochemical and Biophysical Research Communications, 1999, 261(3): 558-561.
[20] Tan J G, Liu Z Q, Wang R W, et al. Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding[J]. Molecular Pharmacology, 2005, 67(2): 513-522.
[21] O’Reilly A O, Khambay B P, Williamson M S, et al. Modelling insecticide-binding sites in the voltage-gated sodium channel[J]. Biochemical Journal, 2006, 396(2): 255-263.
[22] Davies T G E, O’Reilly A O, Field L M, et al. Knockdown resistance to DDT and pyrethroids: from target-site mutations to molecular modelling[J]. Pest Management Science, 2008, 64(11): 1126-1130.
[23] 高新菊. 二斑叶螨对甲氰菊酯的抗性分子机理研究[D]. 兰州: 甘肃农业大学, 2012.
[24] Van Leeuwen T, Dermauw W, Grbic M, et al. Spider mite control and resistance management: does a genome help?[J] Pest Management Science, 2013, 69(2): 156-159.
[25] Wybouw N, Balabanidou V, Ballhorn D J, et al. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change[J]. Insect Biochemistry and Molecular Biology, 2012, 42(12): 881-889.
[26] Dermauw W, Wybouw N, Rombauts S, et al. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 113-122.
[27] Whittall R A, Scartezini M, Li K, et al. Development of a high-resolution melting method for mutation detection in familial hyperch -olesterolaemia patients[J]. Annals of Clinical Biochemistry, 2010, 47: 44-55.
[28] 熊亮, 梁朝峰, 陈川, 等. qPCR-HRM曲线分析技术与普通PCR加直接测序法检测胶质瘤EGFR突变比较[J]. 新医学, 2012, 43(5): 327-330. |